Since the year 1872, the large iron works at Ougrée, near Liege, have applied the Bicheroux system of furnaces to heating, and, since the year 1877, to puddling. The results that have been obtained in this last-named application are so satisfactory that it appears to us to be of interest to speak of the matter in some detail.

The apparatus, which is shown in the opposite page, consists of three distinct parts: (1) a gas generator; (2) a mixing chamber into which the gases and air are drawn by the natural draught, and wherein the combustion of the gases begins; and (3) a furnace, or laboratory (not represented in the figure), wherein the combustion is nearly finished, and wherein take place the different reactions of puddling. These three parts are given dimensions that vary according to the composition of the different coals, and they may be made to use any sort of coal, even the fine and schistose kinds which would not be suitable for ordinary puddling. The gases and the air necessary for the combustion of these being brought together at different temperatures, and being drawn into the mixing chamber through the same chimney, it will be seen that the dimensions of the flues that conduct them should vary with the kind of coal used; and the manner in which the gases are brought together is not a matter of indifference.

The Bicheroux System Of Furnaces Applied To The Pu 344 11a


Vertical Section, and Horizontal Section through MNOPQR

The gas generator consists of a hopper, A, into which drops, through small apertures a, the coal piled up on the platform, D. These apertures are closed with coal or bricks. The bottom of the generator is formed of a small standing grate. The coal, on falling upon a mass in a state of ignition, distills and becomes transformed into coke, which gradually slides down over a grate to produce afterward, through its own combustion, a distillation of the coal following it. But as these are features found in all generators we will not dwell upon them.

The gases that are produced flow through a long horizontal flue, B, into a vertical conduit, E, into which there debouches at the upper part a series of small orifices, F, that conduct the air that has been heated. The gases are inflamed, and traverse the furnace c (not shown in the cut), from whence they go to the chimney. Before the air is allowed to reach the intervening chamber it is made to pass into the sole of the furnace and into the walls of the chamber, so that to the advantage of having the air heated there is joined the additional one of having those portions of the furnace cooled that cannot be heated with impunity.

The incompletely burned gases that escape from the furnace are utilized in heating the boilers of the establishment. The dimensions given these furnaces vary greatly according to the charge to be used. All the results at Ougrée have been obtained with 400 kilogramme charges, and the dimensions of the gas generators have been calculated for Six-Bonniers coal, which does not yield over 20 per cent. of gas.

The advantages of this system, which permits of expediting all the operations of puddling, are as follows:

1. A notable economy in fuel, both as regards quantity and quality.

2. Economy resulting from diminution in the waste of metal, with a consequent improvement in the quality of the products obtained.

3. Diminution in cost of repairs.

4. Less rapid wear in the grates.

5. Improvement in the conditions of the work of puddling.

As regards the first of these advantages, it may be stated that the puddling of ordinary Ougrée forge iron, which required with other furnaces 900 to 1,000 kilogrammes of coal, is now performed with less than 600 kilogrammes per ton of the iron produced. The puddling of fine grained iron which required 1,300 to 1,500 kilogrammes of coal is now done with 800. So much for quantity; as for quality the system presents also a very marked advantage in that it requires no rolling coal--the operation of the furnace being just as regular with fine coal, even that sifted through screens of 0.02 meter.

The second class of advantages naturally results from the almost complete prevention of access of cold air. The saving in wastage amounts to 3 or 4 per cent., that is to say, 100 kilogrammes of iron produced is accompanied by a loss of only 9 to 10 kilogrammes, instead of 13 to 15 as ordinarily reckoned.

The diminution in the cost of repairs is due to the fact that the furnace doors, of which there are two, permit of easy access to all parts of the sole; moreover, the coal never coming in contact with the fire-bridges, the latter last much longer than those in other styles of furnaces, and can be used for several weeks without the necessity of the least repair. The reduced wear of the grates results from the low temperature that can be used in the furnace, and the quantity of clinker that can be left therein without interfering with its operation, thus permitting of having the grates always black. These latter in no wise change, and after five months of work the square bars still preserve their sharpness of edges.

As for the improvements in the conditions of the work of puddling, it may be stated that with a uniform price per 100 kilogrammes for all the furnaces, the laborers working at the gas furnaces can earn 25 to 30 per cent. more than those working at ordinary furnaces.