Our thriving neighbor, Hoboken, just across the Hudson River, has a large and vitally important problem to solve. Of the 720 acres within the city limits, 270 acres lie at a considerable height above the river and constitute what are known as the knoll or uplands of Hoboken. Between this low ridge and Palisade Ridge lie 450 acres of marsh lands or meadows, 140 acres of which have already been built upon. The marsh is about half a mile wide, and something like a mile and a half long, extending southward into Jersey City. The surface is a network of matted vegetation and roots perhaps five feet deep, and under that lies a mass of blue clay or river silt 100 feet or more in depth. The original tidal flow over these marsh lands has been obstructed by viaducts for railroads and streets, leaving only two natural outlets, a sluice way at Fifteenth street on the north, and on the south a basin constructed by the D. L. & W. R. R., 100 feet wide, and 2,300 feet long. The average level of the marsh land is three feet above mean low water and a foot and a half below mean high water. In the part built upon the streets are but two feet above mean high water.

During long easterly and northerly storms, especially at times of high spring tides, the level of the water in the Hudson is often such as to cover the meadows even at low tide; and on several occasions the water at high tide has been 4½ feet above the level of the meadows, and a foot or more above the established grade of the streets.

The problem is to drain these marsh lands so as to make them properly habitable and to protect them from invasion by high tides and storm waters.

The first drainage map of the district was made about fifteen years ago; since then over $100,000 have been expended on tidal sewers and other devices, and several acts have been passed by the New Jersey Legislature in furtherance of the work. An extended review of the plans proposed and the experiments made thus far is given in a report presented to the Board of Health and Vital Statistics, last May, by Engineers Spielmann and Brush. Ten years ago Mr. Arthur Spielmann, on being directed by the City Council to prepare plans and estimates for a contemplated sewer in Ferry street to the western boundary of the city, reported adversely to the project, believing that such a sewer would fail to answer the purpose of its construction.

There were but two ways, he thought, of securing the end desired: First, by raising the grade sufficient to give a good drainage; second, by making reservoirs and forcing the drainage matter out into the river by steam pumps. The first method he found impracticable on account of the cost of filling in so large an area and of raising the large number of houses already on the low ground. The second plan was recommended as being much cheaper and entirely practicable. Substantially the same position is taken in the report of last May, wherein it is alleged that the superior economy of a pumping system has been sufficiently attested by several eminent hydraulic engineers who have since investigated the problems involved. On a small scale the efficacy of the pumping system has been practically tested, first, in Meadow street, between Ferry and First streets, and more recently in the southern part of the city, where a number of property owners have kept twenty-five acres free from water (except during storms) by means of a private pump.

The comparative economy of the pumping system is shown by estimates in detail of the cost of constructing and operating such a system in contrast with, the cost of raising the grade and introducing tidal sewers. Under both systems the cost of the ordinary sewers will be about the same. A proper system of tidal sewers, it is claimed, will necessitate the raising of the grade of the streets on the low lands to a height at least ten feet above mean high water. The extra cost of raising the streets is estimated at $3,000,000. The cost of the pumping system, with machinery and power sufficient to remove all storm water and sewage, is put at $150,000, while the running expenses, including interest on the first outlay, are put at $30,000 a year. The interest on the preliminary expenditure of the first plan considered is $180,000 a year, or six times as much as the pumping system would involve.

According to the estimates made by Engineer Kirkwood, in his report of 1874, a total pumping capacity of 134,500,000 gallons a day will ultimately have to be provided to meet the requirements during the heaviest storms, besides some six or seven million gallons a day of sewage proper, exclusive of storm waters. Not more than half that amount of pumping will be required at first, the increase to be made gradually as the marsh land is built upon.