At the recent exhibition at Boston of the New England Institute, several interesting novelties were shown which have a promise of considerable economic and industrial value.

Fig. 1 represents the general plan and pulley connections of the Harris Revolving-Ring Spinning Frame. The purpose of the improvements which it embodies is to avoid the uneven draught of the yarn in spinning and winding incident to the use of a fixed ring. With the non-revolving ring the strain upon the yarn varies greatly, owing to the difference in diameter of the full and empty bobbin. At the base of the cone, especially in spinning weft, or filling, the diameter of the cop is five or six times that of the quill at the tip. As the yarn is wound upon the cone, the line of draught upon the traveler varies continually, the pull being almost direct where the bobbin is full, and nearly at right angles where it is empty. With the increasing angle the drag upon the traveler increases, not only causing frequent breakages of the yarn, but also an unequal stretching of the yarn, so that the yarn perceptibly varies in fineness. The unequal strain further causes the yarn to be more tightly wound upon the outside than upon the inside of the bobbin, giving rise to snarls and wastage.

Recent Improvements In Textile Machinery

Recent Improvements In Textile Machinery

1, 2


These difficulties have hitherto prevented the application of ring spinning to the finer grades of yarn. They are overcome in the new spinning frame by an ingenious device by which a revolving motion is given to the ring in the same direction as the motion of the traveler, thereby reducing its friction upon the ring, the speed of the ring being variable, and so controlled as to secure a uniform tension upon the yarn at all stages of the winding.

The construction of the revolving ring is shown in Fig. 2. C is the revolving ring; D, the hollow axis support; H, a section of the ring frame; E, the traveler.

To give the required variable speed to the revolving ring there is placed directly over the drum, Fig. 1, A, for driving the spindle a smaller drum, B, from which bands drive each ring separately. The shaft, which is attached by cross girts to the ring rail, and moves up and down with it, is driven by a pair of conical drums from the main cylinder shaft; and is so arranged with a loose pulley on the large end of the receiving cone as to remain stationary while the wind is on or near the base of the bobbin. When the cone of the bobbin diminishes so as to materially increase the pull on the traveler, the conical drums are started by a belt shipper attached to the lilt motion. By the movement of the belt on these drums a continually accelerated motion is given to the rings, their maximum speed being about one-twentieth the number of revolutions per minute as the spindle has at the same moment. This action is reversed when the lift falls. The tension of the wind upon the bobbin is thus kept uniform, the desired hardness of the wind being secured by the use of a heavier or lighter traveler according to the compactness of cop required.

The model frame shown at the fair did its work admirably well, spinning yarns as high as No. 400, a fineness hitherto unattainable on ring frames. It is claimed that this invention can do whatever can be done with the mule, and without the skilled labor which mule spinning demands.

This invention is exhibited by E. & A. W. Harris, Providence, R.I.

New Electric Stop Motion

Figs. 3, 4, and 5 illustrate some of the applications of the electric stop motion in connection with cotton machinery. The merit of this invention lies in simplifying the means by which machinery may be stopped automatically the instant, its work, from accident or otherwise, begins to be improperly done. The use of electricity for this purpose is made possible by the fact that comparatively dry cotton is a nonconductor of electricity. In the process of carding, drawing or spinning, the cotton is made to pass between rollers or other pieces forming parts of an electric circuit. So long as the machine is properly fed and in proper working condition, the stopping apparatus rests; the moment the continuity of the cotton is broken or any irregularity occurs, electric contact results, completing the circuit and causing an electro magnet to act upon a lever or other device, and the machine is stopped. The current is supplied by a small magneto-electric machine driven by a band from the main driving shaft, and is always available while the engine is running.

Fig. 3 shows the general arrangement of the apparatus as applied to a drawing frame. In the process of drawing down the roll of cotton--the sliver--four things may happen making it necessary to stop the machine. A sliver may break on the way from the can to the drawing rollers, or the supply of cotton may become exhausted; the cotton may lap or accumulate on the drawing rollers; the sliver may break between the drawing rollers and the calender rollers; or the front can may overflow. In each and all of these cases the electric circuit is instantly completed; the parts between which the cotton flows either come together, as when breakage occurs, or, if there is lapping, they are separated so as to make contact above. In any case, the current causes the electro-magnet, S, against the side of the machine to move its armature and set the stop motion in play.

Figs. 4 and 5 represent in detail the manner in which electric connection is made in two cases requiring the intervention of the stop motion. In Fig. 4 the upper part of a receiving can is shown. When the can is full the cotton lifts the tube wheel, J, until it makes an electrical connection, and the stop motion is brought into instant action. In Fig. 5, the traction upon the yarn holds the hook borne by the spring, F, away from G, and the electric circuit is interrupted. A breakage of the yarn allows this spring to act; contact is made, and the stop motion operates as before.