All these different methods of testing point to the conclusion that during dewy nights, in this climate, vapor is constantly being given off from grass land, and almost always from bare soil; that the tide of vapor almost always sets outward from the earth and but rarely ebbs, save after being condensed to cloud and rain, or on those rarer occasions on which, after the earth has got greatly cooled, a warm moist air blows over it. The results of the experiments are given, showing, from weighings, the amount of vapor lost by the soil at night, and also the heat lost by the surface soil.

It seems probable that when the radiation is strong, that soil, especially if it is loose and not in good heat-communication with the ground, will get cooled below the dew-point, and have vapor condensed upon it. On some occasions the soil certainly got wetter on the surface, but the question still remains, Whence the vapor? Came it from the air, or from the soil underneath? The latter seems the more probable source; the vapor rising from the hot soil underneath will be trapped by the cold surface-soil, in the same way as it is trapped by grass over grass-land. During frost, opportunities are afforded of studying this point in a satisfactory manner, as the trapped vapor keeps its place where it is condensed. On these occasions the under sides of the clods, at the surface of the soil, are found to be thickly covered with hoar-frost, while there is little on their upper or exposed surfaces, showing that the vapor condensed on the surface-soil has come from below.

The next division of the subject is on dew on roads. It is generally said that dew forms copiously on grass, while none is deposited on roads, because grass is a good radiator and cools quicker, and cools more, than the surface of a road. It is shown that the above statement is wrong, and that dew really does form abundantly on roads, and that the reason it has not been observed is that it has not been sought for at the correct place. We are not entitled to expect to find dew on the surface of roads as on the surface of grass. because stones are good conductors of heat, and, the vapor-tension being higher underneath than above the stones, the result is, the rising vapor gets condensed on the under sides of the stones. If a road is examined on a dewy night, and the gravel turned up, the under sides of the stones are found to be dripping wet.

Another reason why no dew forms on the surface of roads is that the stones, being fair conductors, and in heat communication with the ground, the temperature of the surface of the road is, from observations taken on several occasions, higher than that of the surface of the grass alongside. The air in contact with the stones is, therefore, not cooled so much as that in contact with the grass.

For studying the formation of dew on roads, slates were found to be useful. One slate was placed over a gravelly part of the road, and another over a hard dry part. Examined on dewy nights, the under sides of these slates were always found to be dripping wet, while their upper surfaces, and the ground all round, were quite dry.

The importance of the heat communicated from the ground is illustrated by a simple experiment with two slates or two iron weights, one of them being placed on the ground, either on grass or on bare soil, and the other elevated a few inches above the surface. The one resting on the ground, and in heat-communication with it, is found always to keep dry on dewy nights, whereas the elevated one gets dewed all over.

The effect of wind in preventing the formation of dew is referred to. It is shown that, in addition to the other ways already known, wind hinders the formation of dew by preventing an accumulation of moist air near the surface of the ground.

An examination of the different forms of vegetation was made on dewy nights. It was soon evident that something else than radiation and condensation was at work to produce the varied appearances then seen on plants. Some kinds of plants were found to be wet, while others of a different kind, and growing close to them, were dry, and even on the same plant some branches were wet, while others were dry. The examination of the leaf of a broccoli plant showed better than any other that the wetting was not what we might expect if it were dew. The surface of the leaf was not wet all over, and the amount of deposit on any part had no relation to its exposure to radiation or access to moist air; but the moisture was collected in little drops, placed at short distances apart, along the very edge of the leaf. Closer examination showed that the position of these drops had a close relation to the structure of the leaf; they were all placed at the points where the veins in the leaf came to the outer edge, at once suggesting that these veins were the channels through which the liquid had been expelled. An examination of grass revealed a similar condition of matters; the moisture was not equally distributed over the blade, but was in drops attached to the tips of some of the blades.

These drops, seen on vegetation on dewy nights, are therefore not dew at all, but are an effect of the vitality of the plant.

It is pointed out that the excretion of drops of liquid by plants is no new discovery, as it has been long well known, and the experiments of Dr. Moll on this subject are referred to; but what seems strange is that the relation of it to dew does not seem to have been recognized.

Some experiments were made on this subject in its relation to dew. Leaves of plants that had been seen to be wet on dewy nights were experimented on. They were connected by means of an India-rubber tube with a head of water of about one meter, and the leaf surrounded with saturated air. All were found to exude a watery liquid after being subjected to pressure for some hours, and a broccoli leaf got studded all along its edge with drops, and presented exactly the same appearance it did on dewy nights. A stem of grass was also found to exude at the tips of one or two blades when pressure was applied.

The question as to whether these drops are really exuded by the plant, or are produced in some other way, is considered. The tip of a blade of grass was put under conditions in which it could not extract moisture from the surrounding air, and, as the drop grew as rapidly under these conditions as did those on the unprotected blades, it is concluded that these drops are really exuded by the plant. Grass was found to get "dewed" in air not quite saturated.

On many nights no true dew is formed, and nothing but these exuded drops appear on the grass; and on all nights when vegetation is active, these drops appear before the true dew; and if the radiation is strong enough and the supply of vapor sufficient, true dew makes its appearance, and now the plants get equally wet all over, in the same manner as dead matter. The difference between true dew on grass and these exuded drops can be detected at a glance. The drops are always exuded at a point near the tip of the blade, and form a drop of some size, while true dew is distributed all over the blade. The exuded liquid forms a large diamond-like drop, while the dew coats the blade with a pearly luster.

Toward the end of the paper the radiating powers of different surfaces at night is considered, and after a reference to some early experiments on this subject, the paper proceeds to describe some experiments made with the radiation thermometer described by the author in a previous paper. When working with this instrument, it is placed in a situation having a clear view of the sky all round, and is fixed at the same height as the ordinary thermometer screen, which is worked along with it, the difference between the thermometer in the screen and the radiation thermometer being observed. This difference in clear nights amounts to from 7° to 10°. By means of the radiation thermometer the radiating powers of different surfaces were observed. Black and white cloths were found to radiate equally well; soil and grass were also almost exactly equal to each other. Lampblack was equal to whitening. Sulphur was about two-thirds of black paint, and polished tin about one-seventh of black paint. Snow in the shade on a bright day was at midday 7° colder than the air, while a black surface at the same time was only 4° colder. This difference diminished as the sun got lower, and at night both radiated almost equally well.

In the concluding pages of the paper some less important subjects are considered.

[15]Abstract of paper read before the Royal Society of Edinburgh on Dec. 21, 1885, by Mr. Aitken, communicated by permission of the Council of the Society. - Nature.