Being called upon to make a good many brief and rapid analyses of urine on "clinic days" of our medical department, I devised the following modification of Knop's method of estimating urea; and after using it for a year with perfectly satisfactory results, venture to describe and recommend it as especially adapted for physicians' use, by reason of simplicity, cheapness, and accuracy. In perfecting and testing it I was assisted greatly by J. Torrey, Jr., then working with me.

Method For Rapid Estimation Of Urea 508 16

The apparatus consists of the glass tube, A, which is about 8 cm. long and 2½ cm. in diameter, joined to the tube, B, which is about 25 or 30 cm. in length in its longer arm and 8 or 10 in its shorter, and has a diameter of about 5 mm. Near the bend is an outlet tube, c, provided with "ball valve" or pinch cock. d, e, f, g, are marks upon the tubes. C is a rubber cork with two holes through which the bent tube, D, passes. D is of such size and length as to hold about 1 c.c., and one of its ends may be a trifle longer than the other.

The apparatus is used as follows: Remove the cork and pour in mercury until it stands at e and g, then fill up to the mark, f, with sodium or potassium hypobromite (made by shaking up bromine with a strong solution of sodium or potassium hydroxide). Next carefully fill the tube in the cork with the urine, being careful especially not to run it over or leave air bubbles in it. This can easily be done by using a small pipette, but if accidentally a little runs over, it should be wiped off the end of the cork with blotting paper. The cork is then to be inserted closely into the tube; the urine tube being so small, the urine will not run out in so doing. The mercury is then drawn out through c till it stands in B at d. Its level in A will of course not be changed greatly. Now, incline the apparatus till the surface of the hypobromite touches the urine in the longer part of the urine tube, and then bring it upright again. The urine will thus be discharged into the hypobromite, which will of course decompose the urea, liberating nitrogen, which will cause the mercury to rise in B. Shake until no further change of level is seen, and mark the level of mercury in B with a rubber band, then remove the cork, draw out the liquid with a pipette, dry out the tube above the mercury with scrap of blotting paper, pour back the mercury drawn out, and repeat the process to be sure that no error was made.

If now two or three marks have been made upon the tube, B, indicating the height of the mercury when solutions containing known per cents. of urea are used, an accurate opinion can be at once formed as to the condition of the urine as regards urea.

As is well known, normal urine contains about 2.5-3 per cent. of urea, so that graduations representing 2, 2.5, 3, and 4 per cent. are usually all that are needed, though of course many more can be easily made.

The results obtained with this apparatus have been repeatedly compared with those of more elaborate ones, and no practical difference observed. Evidently the same apparatus, differently graduated, might be employed to determine the carbonate present in such a substance as crude soda ash or other similar mixture. In such a case the weighed material would be put upon the mercury with water and the small tube filled with acid.

Bowdoin College Chemical Laboratory.

- F.C. Robinson, in Amer. Chem. Jour.