The sinking of mine shafts in certain Belgian and French basins, where the coal deposit is covered with thick strata of watery earth, has from all times been considered as the most troublesome and delicate, and often the most difficult operation, of the miner's art. Of the few modern processes that have been employed for this purpose, that of Messrs. Kind and Chaudron has been found most satisfactory, although it leaves much to be desired where it is a question of traversing moving sand. An interesting modification of this well-known process has recently been described by Mr. E. Chavatte, in the Bulletin de la Societe Industrielle du Nord de la France. Two years ago the author had to sink a working shaft at Quievrechain, 111 feet of which was to traverse a mass of moving and flowing sand, inconsistent earth, gravel, and marls, and proceeded as follows:

He first put down two beams, A B (Pl. 1, Figs. 2, 3, and 9), each 82 feet in length and of 20×20 inch section in the center, and upon these placed two others, E F, of 16×16 inch section. Beneath the two first were inserted six joists, c c c c c c, about 82 feet in length and of 14 or 16 inch section in the center. Finally these were strengthened at their extremities with two others, d d, about 82 feet in length. All these timbers, having been connected by tie bands and bolts, constituted a rigid structure that covered a surface of nearly seven hundred square yards.

From the beams, A B and E F, there was suspended a red fir frame by means of thirty-four iron rods.

Upon this frame, which was entirely immersed in the moving sand, there was established brick masonry (Figs. 1, 2, and 3). As the ends of the timbers entered the latter, and were connected by 1½ inch bolts, they concurred in making the entire affair perfectly solid. The frame, K K, was provided with an oaken ring, which was affixed to it with bolts.

After this, a cast iron tubbing, having a cutting edge, and being composed of rings 3.28 feet wide and made of six segments, was lowered. This tubbing was perfectly tight, all the surfaces of the joints having been made even and provided with strips of lead one-tenth of an inch thick. It weighed 4,000 pounds to the running foot.


Fig. 1. - Section through A B. Fig. 2. - Plan. Fig. 3. - Section through C D. Fig. 5. - Section through E F of Fig. 4. Figs. 6 and 7. - Work Prepared and finished. Fig. 10. - Section through A B and C D of Fig. 12. Figs. 11 6 and 12. - Arrangement of jack-screw. Fig. 13. - Section through A B and C D of Fig. 11.

Plate I


It was first raised to a height of fifteen feet, so as to cause it to enter the sand by virtue of its own gravity. It thus penetrated to a depth of about twenty inches. After this the workmen were ordered to man the windlasses and hoist out some of the sand. This caused the tubbing to descend about eight inches more, when it came to a standstill. It was now loaded with 17,000 pounds of pig iron, but in vain, for it refused to budge. Mr. Chavatte therefore had recourse to a dredge with vertical axis, constructed as follows:

Upon a square axis, A B (Pl. 2, Figs. 1, 2, and 3), provided with double cross braces, C D, and strengthened by diagonals, were riveted, by their upper extremities, two cheeks, G H, whose lower extremities held the steel plates, I J I' J', which, in turn, were fastened to the axis, A B, by their other extremities. These plates were so inclined as to scrape the surface of the ground over which they were moved. They each carried two bags made of coarse canvas and strengthened by five strong leather straps (Figs. 2 and 4). To the steel plates were riveted two plates of iron containing numerous apertures, through which passed leather straps designed for fastening thereto the lower part of the mouth of the bags. That portion of the mouth of the latter that was to remain open was fastened in the same way to two other plates, X Y, X¹ Y¹ (Fig. 1), held between the lower cross-braces.

When the apparatus was revolved, the plates scraped the earth to be removed, and descended in measure as the latter entered the bags. These bags, when full, were hooked, by means of the five rings which they carried, to the device shown in Fig. 8 (Pl. 2), and raised to the surface and emptied into cars.

The dredge was set in motion by four oak levers (Figs. 5 and 6). Two of these were manned by workmen stationed upon the surface flooring, and the other two by workmen upon the flooring in the tubbing. The axis was elongated, in measure as the apparatus descended, by rods of the same dimensions fastened together by cast iron sleeves and bolts (Fig. 7).

The steel plates were not capable of acting alone, even in cases where they operated in pure moving sand containing no pebbles, for the sand was too compact to be easily scraped up by the steel, and so it had to be previously divided. For this purpose Mr. Chavatte used rakes which were in form exactly like those of the extirpators, U and V, of Figs. 1, 2, and 3, of Pl. 2, except that the dividers carried teeth that were not so strong as those of the extirpators, and that were set closer together. These rakes were let down and drawn up at will. They were maneuvered as follows:

The dredge descended with the extirpators pointing upward. When their heads reached the level of the upper floor, the tools were removed. Then the dredge was raised again. In this way the extirpators lay upon the floor, and, if the lifting was continued, they placed themselves in their working position, in which they were fixed by the bolts A" B" C" (Fig. 1). After this, the apparatus was let down and revolved. The rakes divided the earth, the scrapers collected it, and the bags pocketed it.

The great difficulty was to cause the tubbing to descend vertically, and also to overcome the enormous lateral pressure exerted upon it by the earth that was being traversed. Water put into the shaft helped somewhat, but the great stress to be exerted had to be effected by means of powerful jack screws. These were placed directly upon the tubbing, and bore against strong beams whose extremities were inserted into the masonry.