While the experiments of Professor Bjerknes upon pulsating and rectilinearly vibrating bodies and their influence upon one another illustrate by very close analogies the phenomena of magnetism, those upon circularly vibrating bodies and their mutual influences bear a remarkable analogy to electrical phenomena; and it is a significant fact that exactly as in the case of magnetic illustration, the analogies are direct as regards the phenomena of induction, and inverse in their illustration of direct electrical action.

By Conrad W Cooke 488 9 fig1
Fig. 1. By Conrad W Cooke 488 9 fig2

Fig. 2.

If we examine the figure produced by the field of force surrounding a conductor through which a current of electricity is being transmitted (see Fig. 1), we see that iron filings within that field arrange themselves in more or less concentric circles around the conductor conveying the current. From this fact Professor Bjerknes and his son, reasoning that, to produce a similar field of energy around a vibrating body, the vibrations of that body must partake of a circular or rotary character, constructed apparatus for producing the hydrodynamic analogue of electric currents, in which a conductor transmitting a current of electricity is represented by a cylinder to which oscillations in circles around its axis are given by suitable mechanical means, so as to cause the enveloping medium to follow its motion and make similar rotative vibrations. In some of the earlier experiments in this direction, cylinders carrying radial veins (A, Fig. 2) or fluted longitudinally around their surfaces (B, Fig. 2) were employed with the object of giving the vibrating cylinder a greater hold of the liquid in which they were immersed; but it was found that these vanes or flutings had but little or no effect upon water or liquids of similar viscosity, and Professor Bjerkes was led to adopt highly viscous fluids, such as Glycerin or maize sirup, both of which substances are well adapted for the experiments, being at the same time both highly viscous and perfectly transparent and colorless.

In seeking, for the purpose of this research, a fluid medium which shall possess analogous properties to the luminiferous ether, or whatever may be the medium whose vibrations render manifest certain physical phenomena, it might be considered at first sight that substances so dense as glycerin and sirup could have but little in common with the ether, and that an analogy between experiments made within it and phenomena associated with ethereal vibrations would be of a very feeble description: but Professor Bjerknes has shown that the chief requisite in such a medium is that its viscosity should be great, not absolutely, but large only in proportion to its density, and if the density be small, the necessary viscosity may be small also. Neither is it necessary for the fluid medium to possess great internal friction, but what is necessary to the experiments is that the medium shall be one which is readily set into vibration by the action of the circularly vibrating cylinder; this property appears to be possessed exclusively by the more viscous fluids, and is, moreover, in complete accord with what is known of the luminiferous ether according to the theory of light.

The property is rather a kind of elasticity, which ordinary fluids do not possess, but which facilitates the propagation of transverse vibrations.

By Conrad W Cooke 488 9 fig3
Fig. 3.

One form of apparatus for the propagation of rotative oscillations is shown to the left of Fig. 3, and consists of a cylinder, A, mounted on a tubular spindle, and which is set into circular oscillations around its axis by the little vibrating membrane, C, which is attached to the axis of the cylinder by a little crank and connecting rod shown in detail in Fig. 4. This membrane is set into vibration by a rapidly pulsating column of air contained in a flexible tube M. by which apparatus is connected to the pulsation pump which was employed by Professor Bjerknes in his earlier experiments. In Fig. 5, a somewhat similar apparatus for producing horizontal vibrations is shown, and marked N H C, the only difference between them being one of mechanical detail necessitated by the change in the position of axis of vibration from the vertical to the horizontal.

By Conrad W Cooke 488 9 fig4
Fig. 4.

If circularly vibrating cylinders, such as we have described, be immersed in a viscous fluid and set into action, the following phenomena may be observed: 1. The effect upon the fluid itself, setting up therein a field of vibration, and corresponding by analogy with the production of a field of force around a wire conveying an electric current. 2. The effect upon other circularly vibrating bodies within that field of force corresponding to the action and reaction of electric currents upon one another. 3. The effect on pulsating and oscillating bodies similarly immersed, illustrating the mutual effects upon one another of magnets and electric currents. The first of these effects is one of induction, and, from what has been said from an earlier part of this article, it will be understood that the analogy between the hydrodynamic and the electric phenomena is direct and complete. The effects classified under the second and third heads, being phenomena of direct action (in the restricted use of the word), are uniformly analogous to the magnetic and electric phenomena which they illustrate.

By Conrad W Cooke 488 9 fig5
Fig. 5.

(To be continued.)