We illustrate in the annexed engraving the microphone-telephone constructed by Messrs. Mix & Genest, of Berlin, which, after extended trials, has been adopted in preference to others by the imperial postal department of Germany. There are now more than 5,000 of these instruments in use, and we need scarcely mention that the invention has been patented in many countries.

In some microphones a rattling noise is frequently occasioned, which borne along with the sound of the human voice causes an audible disturbance in the telephone. The chief cause of these disturbances may be ascribed to the fact that the carbon rollers in their journals, rest loose in the flutings of the beam, which is fastened to the sound plate. Owing to the shocks given to the entire apparatus, and independent of the oscillations of the sound plate, they are set in motion and roll to and fro in their bearings.

In microphones in which the sound plates are arranged vertically (as shown in Fig. 2), these disturbances assume such a character that there is no possibility of understanding the speaker, for in this case the horizontally directed oscillations of the sound plate, m, cause themselves a backward and forward motion on the part of the carbon rollers without increasing or decreasing at the same time the lying-on pressure of the roller journals, and by doing so bring the places of contact one on the other, and thus occasion a conducting resistance of greater or less force. This circumstance serves as an explanation of the reason why the sound plates in Ader's microphones are not arranged vertically, although this way of arranging them offers many advantages over a horizontal or slightly inclined arrangement of the sound plates. Speaking is more convenient in the vertical arrangement, and moreover the plates can be fitted on to instruments better in this way.

All the drawbacks just enumerated and found in Ader's microphones are avoided in the apparatus made by Messrs. Mix & Genest. A sort of braking contrivance operates on the carbon rollers in such a way as to prevent their journals from lying on the lower points in the flutings of the beams. Thus, for instance, if in a microphone with a horizontal sound plate, as illustrated in Fig. 3, the carbon rollers are pressed upward by outward force, it is evident that only a very trifling rolling and disturbing motion can occur, and only small pieces of carbon can be knocked off, which would act injuriously as a secondary contact. The same may be said of the journals of microphones with vertical sound plates, as represented in Fig. 2, when the carbon rollers are pressed in the direction of the arrow, p, that is to say, against the sound plate. In this case the journals, a, are fixed in the flutings of the beams, b, in a direction given them by the power and gravity operating on them, which is clearly represented in the accompanying design, Fig. 2.

Mix And Genest s Microphone Telephone 620 8a
FIG. 1.

Mix And Genest s Microphone Telephone 620 8b
FIG. 2.

Mix And Genest s Microphone Telephone 620 8c
FIG. 3.

In all such cases the regulating contrivance applied to brake the carbon rollers in their motion has the result that only the oscillations transmitted from the sound plate on to the contacts come in operation, whereas disturbing mechanical shocks resulting from any outward influences occasion very insignificant vibrations, which are not perceptible in the telephone. The separate contacts thus form a firm system with the sound plate, so that the former are influenced in their motions and effects solely and alone by the shocks and oscillations which operate direct on these sound plates. The roller motion of the carbon is thus removed, and the distinctness of the words spoken is greatly augmented.

The above Figs. 1 and 2 show the microphone in side view and in cross section.

A metal ring, R (see Fig. 1), is fastened by means of the four screws, r r r r, on a wooden mouthpiece. In a recess of the above ring is the diaphragm, M, which is provided on its outer edge with an India rubber band and is held in position by the two clamps, a and a. The diaphragm is cut out of finely fibered firwood and is well lacquered to preserve it against dampness. On it there are two carbon beams, b, and in the perforations of the latter are the journals of the carbon rollers, k. The alterations in contact take place in the touching points. The cross piece, f, that runs straight across the carbon rollers serves as a braking contrivance, which is regulated as may be necessary by the large projecting screws.

Fig. 3 shows the apparatus in cross section. T is the mouth piece, R the metal ring, M the diaphragm, f the breaking cross piece. On the latter is a metal block fastened by means of two screws. On this metal block is a soft elastic strip (d) of felt or similar material. The letters s and s indicate the regulating screws for the braking contrivance.

The excellent qualities of other microphones, in particular their extreme sensibility for the very least impressions, are undeniable; but it is just this sensibility that is the cause of the complaints made by the public. In practical use this overgreat sensibility proves to be a fault.

In the apparatus constructed by Messrs. Mix and Genest the well-known deficiencies of other systems are avoided. The effect of the sound and the distinctness of the human voice are clearer and far more intelligible. One simple regulation of the microphone suffices for the installation, for there is no danger of its getting out of order. Owing to its peculiar construction, this new microphone is very firm and solid, and for this very reason offers another advantage, namely, the possibility of transmitting sound over very long distances. In the competitive trials instituted by order of the imperial postal department, apparatus of various systems and constructions were subjected to tests, and the apparatus we are speaking of showed the favorable results just mentioned. This microphone has overcome in particular the difficulties connected with the using of combined lines above and below ground, and with the aid of it the excellent telephonic communication is carried on in Berlin, in which city the telephone net is most extensive and complicated. At the same time this microphone transmits the sound over long distances (up to 200 kilom. even) in the most satisfactory manner.

Another peculiar advantage of this construction is that it exercises a very small inductive effect on cables and free lines, and consequently the simultaneous speaking on parallel lines causes but little disturbance.

After repeated trials made by the German imperial postal department with the microphones constructed by Messrs. Mix and Genest, these apparatus have been introduced in the place of the telephones and Bell-Blake microphones hitherto used in the telephone service. At present we understand there are about 8,000 of these apparatus in use.