The 15 inch refractor is now being used with a modification of the apparatus employed by Dr. Draper in his first experiments--a slit spectroscope from which the slit has been removed. A concave lens has been substituted for the collimator and slit, and besides other advantages, a great saving in length is secured by this change. It is proposed to apply this method to the 28 inch reflector, thus utilizing its great power of gathering light.

[A description of an accompanying plate here follows, which is omitted, as the plate cannot be easily reproduced for ordinary press printing.]

The results to be derived from the large number of photographs already obtained can only be stated after a long series of measurements and a careful reduction and discussion of them. An inspection of the plates, however, shows some points of interest. A photograph of a Cygni, taken November, 26, 1886, shows that the H line is double, its two components having a difference in wave length of about one ten-millionth of a millimeter. A photograph of o Ceti shows that the lines G and h are bright, as are also four of the ultra-violet lines characteristic of spectra of the first type. The H and K lines in this spectrum are dark, showing that they probably do not belong to that series of lines. The star near χ' Orionis, discovered by Gore, in December, 1885, gives a similar spectrum, which affords additional evidence that it is a variable of the same class as o Ceti. Spectra of Sirius show a large number of faint lines besides the well-known broad lines.

The dispersion employed in any normal map of the spectrum may be expressed by its scale, that is, by the ratio of the wave length as represented to the actual wave length. It will be more convenient to divide these ratios by one million, to avoid the large numbers otherwise involved. If one millionth of a millimeter is taken as the unit of wave length, the length of this unit on the map in millimeters will give the same measure of the dispersion as that just described. When the map is not normal, the dispersion of course varies in different parts. It increases rapidly toward the violet end when the spectrum is formed by a prism. Accordingly, in this case the dispersion given will be that of the point whose wave length is 400.

This point lies near the middle of the photographic spectrum when a prism is used, and is not far from the H line. The dispersion may accordingly be found with sufficient accuracy by measuring the interval between the H and K lines, and dividing the result in millimeters by 3.4, since the difference in their wave lengths equals this quantity. The following examples serve to illustrate the dispersion expressed in this way: Angstrom, Cornu, 10; Draper, photographer of normal solar spectrum, 3.1 and 5.2; Rowland, 23, 33, and 46; Draper, stellar spectra, 0.16; Huggins, 0.1.

The most rapid plates are needed in this work, other considerations being generally of less importance. Accordingly, the Allen and Rowell extra quick plates have been used until recently. It was found, however, that they were surpassed by the Seed plates No. 21, which were accordingly substituted for them early in December. Recognizing the importance of supplying this demand for the most sensitive plates possible, the Seed Company have recently succeeded in making still more sensitive plates, which we are now using. The limit does not seem to be reached even yet. Plates could easily be handled if the sensitiveness were increased tenfold. A vast increase in the results may be anticipated with each improvement of the plates in this respect. Apparatus for testing plates, which is believed to be much more accurate than that ordinarily employed, is in course of preparation. It is expected that a very precise determination will be made of the rapidity of the plates employed. Makers of very rapid plates are invited to send specimens for trial.

The photographic work has been done by Mr. W.P. Gerrish, who has also rendered important assistance in other parts of the investigation. He has shown great skill in various experiments which have been tried, and in the use of various novel and delicate instruments. Many of the experimental difficulties could not have been overcome but for the untiring skill and perseverance of Mr. George B. Clark, of the firm of Alvan Clark & Sons, by whom all the large instruments have been constructed.

The progress of the various investigations which are to form a part of this work is given below:

1. Catalogue of Spectra of Bright Stars.--This is a continuation of the work undertaken with the aid of an appropriation from the Bache fund, and described in the Memoirs of the American Academy, vol. xi., p. 210. The 8 inch telescope is used, each photograph covering a region of 10° square. The exposures for equatorial stars last for five minutes, and the rate of the clock is such that the spectra have a width of about 0.1 cm. The length of the spectra is about 1.2 cm. for the brighter, and 0.6 cm. for the fainter stars. The dispersion of the scale proposed above is 0.1.

The spectra of all stars of the sixth magnitude and brighter will generally be found upon these plates, except in the case of red stars. Many fainter blue stars also appear. Three or four exposures are made upon a single plate. The entire sky north of -24° would be covered twice, according to this plan, with 180 plates and 690 exposures. It is found preferable in some cases to make only two exposures; and when the plate appears to be a poor one, the work is repeated. The number of plates is therefore increased. Last summer the plates appeared to be giving poor results. Dust on the prisms seemed to be the explanation of this difficulty. Many regions were reobserved on this account. The first cycle, covering the entire sky from zero to twenty-four hours of right ascension, has been completed.

The work will be finished during the coming year by a second cycle of observations, which has already been begun. The first cycle contains 257 plates, all of which have been measured, and a large part of the reduction completed. 8,313 spectra have been measured on them, nearly all of which have been identified, and the places of a greater portion of the stars brought forward to the year 1900, and entered in catalogue form. In the second cycle, 64 plates have been taken, and about as many more will be required. 51 plates have been measured and identified, including 2,974 spectra. A study of the photographic brightness and distribution of the light in the spectra will also be made.