Let the soil be brought on by say one-horse carts, spread in six inch layers, and well watered. The traffic of the carts will consolidate it, and in places where carts cannot traverse it should be punned. In the Parvy reservoir dam a roller was employed for this purpose. It comprised a small lorry body holding about a yard and a half of stone, with two axles, on each of which was keyed a row of five or six wheels.

At the Oued Meurad dam, in Algeria, 95 ft. high, constructed about 23 years ago, the earthwork layers were deposited normal to the outer slope, and as the bank was carried up the water was admitted and allowed to rise to near the temporary crest, and as soon as the bank had settled, the earthwork continued another grade, and the same process repeated.

It was the practice until comparatively recently to make the discharge outlet by laying pipes in a trench under the dam, generally at the lowest point in the valley, or constructing a culvert in the same position and carrying the pipes through this, and in the earlier works the valves or sluices regulating the outflow were placed at the tail of the down stream bank, the pipes under the bank being consequently at all times subject to the pressure of the full head of the water in the reservoir. An instance of the first mentioned method is afforded by the Dale Dyke reservoir, Fig. 2, where two lines of pipes of 18 in. diameter were laid in a trench excavated in the rock and resting upon a bed of puddle 12 in. in thickness, and surrounded by puddle; the pipes were of cast iron, of the spigot and faucet type, probably yarned and leaded at the joints as usual, and the sluice valves were situated at the outer end of the pipes. As the failure of this embankment was, as we all know, productive of such terrible consequences, it may be of interest to enter a little more fully into the details of its construction. It was situated at Bradfield, six or seven miles from Sheffield, and at several hundred feet higher level.

Its construction was commenced in 1858, the puddle trench was probably taken down to a depth of 40 ft. to 50 ft., a considerable amount of water being encountered. This trench was 15 ft. to 20 ft. broad at the top, and of course had to be crossed by the before mentioned line of pipes; and although the trench was filled with puddle, and the gullet cut in the rock already mentioned for carrying the pipes under the site of the dam was "padded" with a layer of 12 in. of puddle, we can imagine that the effect of the weight of the puddle wall and bank upon this line of pipes would be very different at the point where they crossed the puddle trench to what it would be where they were laid in the rock gullet and partially protected from pressure by the sides of the latter. At the trench crossing there would be a bed of puddle 50 ft. in thickness beneath the pipe, in the gullet a bed of 1 ft. in thickness. So much as regards the laying of the pipes.

The embankment had scarcely been completed when, on March 11, 1864, a storm of rain came on and nearly filled it up to the by-wash, when the bank began slowly to subside. The engineer was on the crest at the very time, and remained until the water was running over his boots; he then rushed down the other slope and was snatched out of the way as the bank burst, and the whole body of water, about 250,000,000 gallons, rushed out through the trench, carrying with it in the course of about twenty minutes 92,000 cubic yards, or say one fourth of the total mass of earthwork, causing the death of 250 human beings, not to mention cattle, and destruction of factories, dwellings, and bridges, denuding the rock of its surface soil, and, as it were, obliterating all the landmarks in its course. The greatest depth of the bank from ground level to crest was 95 ft., the top width 12 ft., and the slopes, both on the up stream and down stream sides, 2½ to 1, and the area of the reservoir 78 acres.

Mr. - now Sir Robert - Rawlinson, together with Mr. Beadmore, were called in to make a report, to lay before Parliament, upon this disaster; and having made a careful examination of the ruins, and taken evidence, they were of opinion that the mode of laying the pipes, and in such an unprotected way, was faulty, and that subsidence of the pipes probably occurred at the crossing of the puddle trench. A fissure in the puddle was created, affording a creep for the water, which, once set up, would rapidly increase the breach by scour; and this event was favored by the manner in which the bank had been constructed and the unsuitability of the material used, which, in the words of one engineer, had more the appearance of a quarry tip than of a bank intended to store water. This opinion of the cause of failure was, however, not adopted universally by engineers, the line of pipes when examined being found to be, although disjointed, fairly in line; and there having occurred a land slip in the immediate neighborhood, it was suggested that the rupture might be caused by a slip also having taken place here, especially as the substratum was of flagstone rock tilted at a considerable angle. The formation was millstone grit.

This catastrophe induced an examination to be made of other storage reservoir dams in the same district, and a report on the subject was presented to Parliament by Sir Robert Rawlinson.



The dam of Stubden reservoir, of the Bradford water supply, also on the millstone grit, was constructed about 1859, and caused considerable anxiety for a length of time, as leakage occurred in the culvert carrying the pipes, under the embankment at a point a short distance on the down stream side of the puddle trench. This was repaired to some extent by lining with cast iron plates; and an entirely independent outlet was made by driving a curved tunnel into the hill side clear of the ends of the dam and lining it with cast iron plates. In this tunnel was then laid the main of 2 ft. diameter, and as the original culvert again became leaky, the water had to be lowered, the old masonry pulled out, and the space filled in with puddle.