I cannot leave this subject without referring to a remarkably interesting museum specimen which Prof. Hartig showed and explained to me last summer. This is a block of wood containing an enormous irregularly spheroidal mass of the white felted mycelium of this fungus, Polyporus sulphureus. The mass had been cut clean across, and the section exposed a number of thin brown ovoid bodies embedded in the closely woven felt; these bodies were of the size and shape of acorns, but were simply hollow shells filled with the same felt-like mycelium as that in which they were embedded. They were cut in all directions, and so appeared as circles in some cases. These bodies are, in fact, the outer shells of so many acorns, embedded in and hollowed out by the mycelium of Polyporus sulphureus. Hartig's ingenious explanation of their presence speaks for itself. A squirrel had stored up the acorns in a hollow in the timber, and had not returned to them - what tragedy intervenes must be left to the imagination. The Polyporus had then invaded the hollow, and the acorns, and had dissolved and destroyed the cellular and starchy contents of the latter, leaving only the cuticularized and corky shells, looking exactly like fossil eggs in the matrix. I hardly think geology can beat this for a true story.

The three diseases so far described serve very well as types of a number of others known to be due to the invasion of timber and the dissolution of the walls of its cells, fibers, and vessels by hymenomycetous fungi, i.e., by fungi allied to the toadstools and polypores. They all "rot" the timber by destroying its structure and substance, starting from the cambium and medullary rays.

To mention one or two additional forms, Trametes Pini is common on pines, but, unlike its truly parasitic ally, Tr. radiciperda, which attacks sound roots, it is a wound parasite, and seems able to gain access to the timber only if the spores germinate on exposed surfaces. The disease it produces is very like that caused by its ally; probably none but an expert could distinguish between them, though the differences are clear when the histology is understood.

Polyporus fulvus is remarkable because its hyphae destroy the middle lamella, and thus isolate the tracheides in the timber of firs; Polyporus borealis also produces disease in the timber of standing conifers; Polyporus igniarius is one of the commonest parasites on trees such as the oak, etc., and produces in them a disease not unlike that due to the last form mentioned; Polyporus dryadeus also destroys oaks, and is again remarkable because its hyphae destroy the middle lamella.

With reference to the two fungi last mentioned I cannot avoid describing a specimen in the Museum of Forest Botany in Munich, since it seems to have a possible bearing on a very important question of biology, viz., the action of soluble ferments.

It has already been stated that some of these tree-killing fungi excrete ferments which attack and dissolve starch grains, and it is well known that starch grains are stored up in the cells of the medullary rays found in timber. Now, Polyporus dryadeus and P. igniarius are such fungi; their hyphae excrete a ferment which completely destroys the starch grains in the cells of the medullary rays of the oak, a tree very apt to be attacked by these two parasites, though P. igniarius, at any rate, attacks many other dicotyledonous trees as well. It occasionally happens that an oak is attacked by both of these polyporei, and their mycelia become intermingled in the timber; when this is the case, the starch grains remain intact in those cells which are invaded simultaneously by the hyphae of both fungi. Prof. Hartig lately showed me longitudinal radial sections of oak timber thus attacked, and the medullary rays showed up as glistening white plates. These plates consist of nearly pure starch; the hyphae have destroyed the cell walls, but left the starch intact. It is easy to suggest that the two ferments acting together exert (with respect to the starch) a sort of inhibitory action one on the other; but it is also obvious that this is not the ultimate explanation, and one feels that the matter deserves investigation.

It now becomes a question - What other types of timber diseases shall be described? Of course the limits of a popular article are too narrow for anything approaching an exhaustive treatment of such a subject, and nothing has as yet been said of several other diseases due to crust-like fungi often found on decaying stems, or of others due to certain minute fungi which attack healthy roots. Then there is a class of diseases which commence in the bark or cortex of trees, and extend thence into the cambium and timber: some of these "cankers," as they are often called, are proved to be due to the ravages of fungi, though there is another series of apparently similar "cankers" which are caused by variations in the environment - the atmosphere and weather generally.

It would need a long article to place the reader au courant with the chief results of what is known of these diseases, and I must be content here with the bare statement that these "cankers" are in the main due to local injury or destruction of the cambium. If the normal cylindrical sheet of cambium is locally irritated or destroyed, no one can wonder that the thickening layers of wood are not continued normally at the locality in question; the uninjured cells are also influenced, and abnormal cushions of tissue formed, which vary in different cases. Now, in "cankers" this is - put shortly - what happens: it may be, and often is, due to the local action of a parasitic fungus; or it may be, and, again, often is, owing to injuries produced by the weather, in the broad sense, and saprophytic organisms may subsequently invade the wounds.

The details as to how the injury thus set up is propagated to other parts - how the "canker" spreads into the bark and wood around - are details, and would require considerable space for their description: the chief point here is again the destructive action of mycelia of various fungi, which by means of their powers of pervading the cells and vessels of the wood, and of secreting soluble ferments which break down the structure of the timber, render the latter diseased and unfit for use. The only too well known larch disease is a case in point; but since this is a subject which needs a chapter to itself, I may pass on to more general remarks on what we have learned so far.

It will be noticed that, whereas such fungi as Trametes radiciperda and Agaricus melleus are true parasites which can attack the living roots of trees, the other fungi referred to can only reach the interior of the timber from the exposed surfaces of wounds. It has been pointed out along what lines the special treatment of the former diseases must be followed, and it only remains to say of the latter: take care of the cortex and cambium of the tree, and the timber will take care of itself. It is unquestionably true that the diseases due to wound parasites can be avoided if no open wounds are allowed to exist. Many a fine oak and beech perishes before its time, or its timber becomes diseased and a high wind blows the tree down, because the spores of one of these fungi alight on the cut or torn surface of a pruned or broken branch. Of course it is not always possible to carry out the surgical operations, so to speak, which are necessary to protect a tree which has lost a limb, and in other cases no doubt those responsible have to discuss whether it costs more to perform the operations on a large scale than to risk the timber.

With these matters I have nothing to do here, but the fact remains that by properly closing over open wounds, and allowing the surrounding cambium to cover them up, as it will naturally do, the term of life of many a valuable tree can be prolonged, and its timber not only prevented from becoming diseased and deteriorating, but actually increased in value.

There is no need probably for me to repeat that, although the present essay deals with certain diseases of timber due to fungi, there are other diseases brought about entirely by inorganic agencies. Some of these were touched upon in the last article, and I have already put before the readers of Nature some remarks as to how trees and their timber may suffer from the roots being in an unsuitable medium.

In the next paper it is proposed to deal with the so-called "dry rot" in timber which has been felled and cut up - a disease which has produced much distress at various times and in various countries.

[1]

Continued from Supplement, No, 640, p. 10222.