Calcium [symbol Ca, atomic weight 40.0 (O=16)], a metallic chemical element, so named by Sir Humphry Davy from its occurrence in chalk (Latin calx). It does not occur in nature in the free state, but in combination it is widely and abundantly diffused. Thus the sulphate constitutes the minerals anhydrite, alabaster, gypsum, and selenite; the carbonate occurs dissolved in most natural waters and as the minerals chalk, marble, calcite, aragonite; also in the double carbonates such as dolomite, bromlite, barytocalcite; the fluoride as fluorspar; the fluophosphate constitutes the mineral apatite; while all the more important mineral silicates contain a proportion of this element.


Calcium oxide or lime has been known from a very remote period, and was for a long time considered to be an elementary or undecomposable earth. This view was questioned in the 18th century, and in 1808 Sir Humphry Davy (Phil. Trans., 1808, p. 303) was able to show that lime was a combination of a metal and oxygen. His attempts at isolating this metal were not completely successful; in fact, metallic calcium remained a laboratory curiosity until the beginning of the 20th century. Davy, inspired by his successful isolation of the metals sodium and potassium by the electrolysis of their hydrates, attempted to decompose a mixture of lime and mercuric oxide by the electric current; an amalgam of calcium was obtained, but the separation of the mercury was so difficult that even Davy himself was not sure as to whether he had obtained pure metallic calcium. Electrolysis of lime or calcium chloride in contact with mercury gave similar results. Bunsen (Ann., 1854, 92, p. 248) was more successful when he electrolysed calcium chloride moistened with hydrochloric acid; and A. Matthiessen (Jour. Chem. Soc., 1856, p. 28) obtained the metal by electrolysing a mixture of fused calcium and sodium chlorides.

Henri Moissan obtained the metal of 99% purity by electrolysing calcium iodide at a low red heat, using a nickel cathode and a graphite anode; he also showed that a more convenient process consisted in heating the iodide with an excess of sodium, forming an amalgam of the product, and removing the sodium by means of absolute alcohol (which has but little action on calcium), and the mercury by distillation.

The electrolytic isolation of calcium has been carefully investigated, and this is the method followed for the commercial production of the metal. In 1902 W. Borchers and L. Stockem (Zeit. für Electrochemie, 1902, p. 8757) obtained the metal of 90% purity by electrolysing calcium chloride at a temperature of about 780°, using an iron cathode, the anode being the graphite vessel in which the electrolysis was carried out. In the same year, O. Ruff and W. Plato (Ber. 1902, 35, p. 3612) employed a mixture of calcium chloride (100 parts) and fluorspar (16.5 parts), which was fused in a porcelain crucible and electrolysed with a carbon anode and an iron cathode. Neither of these processes admitted of commercial application, but by a modification of Ruff and Plato's process, W. Ruthenau and C. Suter have made the metal commercially available. These chemists electrolyse either pure calcium chloride, or a mixture of this salt with fluorspar, in a graphite vessel which serves as the anode. The cathode consists of an iron rod which can be gradually raised.

On electrolysis a layer of metallic calcium is formed at the lower end of this rod on the surface of the electrolyte; the rod is gradually raised, the thickness of the layer increases, and ultimately a rod of metallic calcium, forming, as it were, a continuation of the iron cathode, is obtained. This is the form in which calcium is put on the market.

An idea as to the advance made by this method is recorded in the variation in the price of calcium. At the beginning of 1904 it was quoted at 5s. per gram, £250 per kilogram or £110 per pound; about a year later the price was reduced to 21s. per kilogram, or 12s. per kilogram in quantities of 100 kilograms. These quotations apply to Germany; in the United Kingdom the price (1905) varied from 27s. to 30s. per kilogram (12s. to 13s. per lb.).