The luster colors are readily decomposed by acids and atmospheric influences, because they do not contain, in consequence of the low baking temperature, enough silicic acid to form resistive compounds. In order to attain this, G. Alefeld has patented a process according to which such compounds are added to the luster preparations as leave behind after the burning an acid which transforms the luster preparation into more resisting compounds. In this connection the admixture of such bodies has been found advantageous, as they form phosphides with the metallic oxides of the lusters after the burning. These phosphides are especially fitted for the production of saturated resisting compounds, not only on account of their insolubility in water, but also on account of their colorings. Similarly titanic, molybdic, tungstic, and vanadic compounds may be produced. The metallic phosphates produced by the burning give a luster coating which, as regards gloss, is not inferior to the non-saturated metallic oxides, while it materially excels them in power of resistance. Since the lusters to be applied are used dissolved in essential oils, it is necessary to make the admixture of phosphoric substance also in a form soluble in essential oils. For the production of this admixture the respective chlorides, preeminently phosphoric chloride, are suitable. They are mixed with oil of lavender in the ratio of 1 to 5, and the resulting reaction product is added to the commercial metallic oxide luster, singly or in conjunction with precious metal preparations (glossy gold, silver, platinum, etc.) in the approximate proportion of 5 to 1. Then proceed as usual. Instead of the chlorides, nitrates and acetates, as well as any readily destructible organic compounds, may also be employed, which are entered into fusing rosin or rosinous liquids.