Recovering Glycerine from Soap Boiler's Lye

I

Glycerine is obtained as a by-product in making soap. For many years the lyes were thrown away as waste, but now considerable quantities of glycerine are recovered, which are much used in making explosive compounds.

When a metallic salt or one of the alkalies, as caustic soda, is added to tallow, a stearite of the metal (common soap is stearite of sodium) is formed, whereby the glycerine is eliminated.

This valuable by-product is contained in the waste lye, and has formed the subject of several patents.

Draw the lye off from the soap-pans; this contains a large quantity of water, some salt and soap and a small quantity of glycerine, and the great trouble is to concentrate the lye so that the large quantity of water is eliminated, sometimes 10 to 12 days being occupied in doing this. The soap and salt are easily removed.

To remove the soap, run the lye into a series of tanks alternating in size steplike, so that as the first, which should be the largest, becomes full, the liquor will flow into the second, from that into the third, and so on; by this arrangement the rosinous and albuminous matters will settle, and the soap still contained in the lyes will float on the surface, from which it is removed by skimming.

After thus freeing the lye of the solid impurities, convey the purified lye to the glycerine recovering department (wooden troughs or pipes may be used to do this), and after concentrating by heating it in a steam-jacketed boiler, and allowing it to cool somewhat, ladle out the solid salt that separates, and afterwards concentrate the lye by allowing it to flow into a tank, but before doing so let the fluid come in contact with a not blast of air or superheated steam, whereby the crude discolored glycerine is obtained. This is further purified by heating with animal charcoal to decolorize it, then distilling several times in copper stills with superheated steam. The chief points to attend to are: (1) The neutralizing and concentrating the lye as much as possible and then separating the salts and solid matters; (2) concentrating the purified lye, and mixing this fluid with oleic acid, oil, tallow, or lard, and heating the mixture to 338° F., in a still, by steam, and gradually raise the heat to 372° F.; (3) stirring the liquor while being heated, and allowing the aqueous vapor to escape, and when thus concentrated, saponifying the liquid with lime to eliminate the glycerine; water is at the same time expelled, but this is removed from the glycerine by evaporating the mixture.

II

In W. E. Garrigues's patent for the recovering of glycerine from spent soap lyes, the liquid is neutralized with a mineral acid, and after separation of the insoluble fatty acids it is concentrated and then freed from mineral salts and volatile fatty acids, and the concentrated glycerine solution treated with an alkaline substance and distilled. Thus the soap lye may be neutralized with sulphuric acid, and aluminum sulphate added to precipitate the insoluble fatty acids. The filtrate from these is concentrated and the separated mineral salts removed, after which barium chloride is added and then sufficient sulphuric acid to liberate the volatile fatty acids combined with the alkali. These acids are partially enveloped in the barium sulphate, with which they can be separated from the liquid by filtration, while the remaining portion can be expelled by evaporating the liquid in a vacuum evaporator. Finally, the solution is treated with sodium carbonate, and the glycerine distilled.

Glycerine Lotion

Glycerine........... 4 ounces

Essence bouquet .... 0.25 ounce

Water.............. 4 ounces

Cochineal coloring, a sufficient quantity. (See also Cosmetics for Glycerine Lotions.)

GLYCERINE APPLICATIONS

See Cosmetics.

GLYCERINE AS A DETERGENT

See Cleaning Preparations and Methods.

GLYCERINE PROCESS

See Photography.

GLYCERINE SOAP

See Soap.

GLYCERINE DEVELOPER

See Photography.