The hard solder or gold solder which the jeweler frequently requires for the execution of various works, not only serves for soldering gold ware, but is also often employed for soldering fine steel goods, such as spectacles, etc. Fine gold is only used for soldering articles of platinum. The stronger the alloy of the gold, the more fusible must be the solder. Generally the gold solder is a composition of gold, silver, and copper. If it is to be very easily fusible, a little zinc may be added, but, on the other hand, even the copper is sometimes left out and a mixture consisting only of gold and silver (e. g., equal parts of both) is used. The shade of the solder also requires attention, which must be regulated by varying proportions of silver and copper, so that it may be as nearly as possible the same as that of the gold to be soldered.


For 24-carat gold: Twenty-two parts gold (24 carat), 2 parts silver, and 1 part copper; refractory.


For 18-carat gold: Nine parts gold (18 carat), 2 parts silver, and 1 part copper; refractory.


For 16-carat gold: Twenty-four parts gold (16 carat), 10 parts silver, and 8 parts copper; refractory.


For 14-carat gold: Three parts gold (14 carat), 2 parts silver, and 1 part copper; more fusible.


Gold solder for alloys containing smaller quantities of gold is composed of 8 parts gold, 10.5 parts silver, and 5.5 parts copper, or,


Ten parts gold (13.5 carat), 5 parts silver, and 1 part zinc.


The following easily fusible solder is used for ordinary gold articles: Two parts gold, 9 parts silver, 1 part copper, and 1 part zinc. Articles soldered with this solder cannot be subjected to the usual process of coloring the gold, as the solder would become black.


A refractory enamel solder for articles made of 20-carat and finer gold, which can bear the high temperature required in enameling, consists of 37 parts gold and 9 parts silver, or 16 parts gold (18 carat), 3 parts silver, and 1 part copper.

Which of these compositions should be employed depends upon the degree of the fusibility of the enamel to be applied. If it is very difficult of fusion only the first named can be used; otherwise it may happen that during the melting on of the enamel the soldering spots are so strongly heated that the solder itself melts. For ordinary articles, as a rule, only readily fusible enamels are employed, and consequently the readily fusible enameling solder may here be made use of. Soldering with the latter is readily accomplished with the aid of the soldering pipe. Although the more hardly fusible gold solders may also be melted by the use of the ordinary soldering pipe, the employment of a special small blowing apparatus is recommended on account of the resulting ease and rapidity of the work.