(See also Ceramics, Glazes, Paints, Waterproofing, and Varnishes.)

Commercial Enameling

Commercial enameling includes: (1) Hollow ware enameling for domestic use; (2) hollow ware enameling for chemical use; (3) enameling locomotive and other tubes; (4) enameling drain and water pipes; (5) signboard enameling.

There is one defect to which all enamel ware is subject, and that is chipping. This may be caused by (1) imperfect mixing of the enamels; (2) imperfect fusing; (3) imperfect pickling of the iron; (4) rough usage. With ordinary care a well-enameled article has been known to last in daily use for 10 or 12 years, whereas defective enameling, say, on a sign tablet—which is exempt from rough usage—may not have a life exceeding a few months. All enameled articles, such as hollow ware and sign tablets, first receive a coating of a composition chiefly composed of glass called "gray," and this is followed by a deposit of "white," any additional color required being laid above the white. In the mixing and depositing of these mixtures lie the secrets of successful enameling. The "gray" has to be fused not only on but also into the metal at a bright red—almost white—heat, and it is obvious that its constituents must be arranged and proportioned to expand and contract in a somewhat uniform manner with the iron itself. The "white'.' has to be fused on the surface of the gray, but the gray being much harder is not affected by the second firing. If it were liquid it would become mixed with the white and destroy its purity. Frequently, owing to inferior chemicals, imperfect mixing or fusing, a second coating of white is necessary, in order to produce a surface of the necessary purity and luster. The difficulties of enameling are thus easily understood. Unless the metals and chemicals are so arranged and manipulated that their capacities of expansion and contraction are approximately the same, inferior work will be produced. Oxide of iron on the surface of the plates, inferior chemicals, incorrect mixings, insufficient or overheating in the process of fusing, prevent that chemical combination which is essential to successful enameling. The coatings will be laid on and not combined, with the result that there will be inequalities in expansion and contraction which will cause the enamel to chip off immediately if submitted to anything approaching rough usage, and in a very short time if submitted to chemical or ordinary atmospheric conditions.

The manufacture of sign tablets is the simplest form to which this important art is adapted. Sign-tablet enameling is, however, kept as great a secret as any other type. This branch of the industry is divided up as follows: (1) Setting the plates; (2) scaling and pickling the plates; (3) mixing the enamel constituents; (4) melting the enamel constituents; (5) grinding the enamel constituents; (0) applying the enamel; (7) drying the enamel coatings; (8) fusing the enamel on the articles; (9) lettering—including alphabetical and other drawing, spacing, and artistic art in arrangement; (10) stencil cutting on paper and stencil metal; (11) brushing; (12) refusing. Distinctive branches of this work have distinctive experts, the arrangement being generally as follows: Nos. 1 and 2 may or may not be combined; Nos. 3 and 5 may or may not be combined; Nos. 4, 7, 8, and 12 generally combined; No. 6 generally the work of girls; Nos. 9 and 10 generally combined; No. 11 generally the work of girls and boys. The twelve processes, therefore, require six classes of trained workpeople, and incompetence or carelessness at any section can only result in imperfect plates or "wasters."

A brief description of these processes will enable the reader to understand the more detailed and technical description to follow, and is, therefore, not out of place. Ordinary iron sheets will do for the manufacture of sign tablets; but a specially prepared charcoal plate can be had at a slightly increased price. The latter type is the best, for in many cases the scaling and pickling may, to a certain extent, be dispensed with. To make this article, however, as complete as possible, we shall begin from the lowest rung of the manufacturing ladder—i. e., from the first steps in the working of suitable iron.


Setting.—The plates may be received in sheets, and cut to the required size at the enameling factory, or, what is more general, received in sizes according to specification. The former are more liable to have buckled slightly or become dented, and have to be restored to a smooth and uniform surface by hammering on a flat plate. The operation seems simple, but an inexperienced operator may entirely fail to produce the desired result, and, if he does succeed, it is with the expenditure of a great amount of time. An expert setter with comparatively few and well-directed strokes brings an imperfect plate into truth and in readiness for the next operation.


Scaling and Pickling.—The annealing of the sheets in special furnaces loosens the scale, which can then be easily removed, after which immersion for some time in diluted sulphuric or muriatic acid thoroughly cleans the plate. 10

Firing to a red heat follows, and then a generous course of scrubbing, and the last traces of acid are removed by dipping in boiling soda solution. Scouring with sand and washing in clean water may follow, and the metal has then a perfect and chemically clean surface.


Mixing the Enamel Constituents.—Ground, foundation, or gray.— All articles, whether hollow ware or plates, are operated upon in a very similar manner. Both require the foundation coating generally called "gray." The gray constituents vary considerably in different manufactures; but as regards the use of lead, it is universally conceded that while it may in many instances be used with advantage in the enameling of sign tablets, etc., it should under no circumstances be introduced into the coating of articles for culinary purposes, or in which acids are to be used. The first successful commercial composition of this covering was: Cullet (broken glass), carbonate of soda, and boracic acid. This composition remained constant for many years, but ultimately gave place to the following: Cullet, red lead, borax, niter. The borax and red lead form the fluxes, while the niter is to "purify" the mass. Some of the later mixings consist of the following: Silica powder, crystallized or calcium borax, white lead, fused together. This would be called a frit, and with it should be pulverized powdered silica, clay, magnesia. This recipe is one requiring a very high temperature for fusing: Silica powder, borax, fused and ground with silica, clay, magnesia. This requires a slightly lower temperature: Frit of silica powder, borax, feldspar, fused together, and then ground with clay, feldspar, and magnesia.