[Footnote: A communication to the Sheffield Photographic Society in the British Journal of Photography.]

It is quite possible that in the remarks I propose making this evening in connection with the photographic art I may mention topics and some details which are familiar to many present; but as chemistry and optical and physical phenomena enter largely into the theory and practice of photography, the field is so extensive there is always something interesting and suggestive even in the rudiments, especially to those who are commencing their studies. Although this paper may be considered an introductory one, I do not wish to load it with any historical account, or describe the early methods of producing a light picture, but shall at once take for my subject, "The Photographic Image: What It Is," and under this heading I must restrict myself to the collodion and silver or wet process, leaving gelatine dry plates, collodio-chloride, platinum, carbontype, and the numerous other types which are springing up in all directions for future consideration.

Now, in an ordinary pencil, pen and ink, or sepia sketch we have a deposit of a dark, non-reflecting substance, which gives the outline of a figure on a lighter background. The different gradations of shade are acquired by a more or less deposit of lead, ink, or sepia. In photography--at least in the ordinary silver process--the image is formed by a deposition of metallic silver or organic oxide in a minute state of division, either on glass, paper, or other suitable material. This is brought about by the action of light and certain reagents. Light has long been recognized as a motive power comparable with heat or electricity. Its action upon the skin, fading of colors, and effect on the growth of vegetable and animal organisms are well known; and, although the exact molecular change in many instances is not clearly understood, yet certain salts of silver, iron, the alkaline bichromates, and some organic materials--as bitumen and gelatine--have been pretty well worked out.

It is a remarkable and well-known fact that the chloride, iodide, and bromide of silver--called "sensitive salts" in photography--are not susceptible (at least only slowly) to change when exposed to the yellow, orange, and red rays. The longer wave lengths of the spectrum, as you know, form, with violet, indigo, blue, and green, white light. The diagram on the wall shows this dispersion and separation of the primitive colors. These--the yellow, orange, and red-- are called technically "non actinic" rays, and the others in their order become more actinic until the ultra violet is reached. The action of white light, or rays, excluding yellow, orange, and red, has the effect of converting silver chloride into a sub-chloride; it drives off one equivalent of chlorine. Thus, silver chloride, AgCl=AgCl+Cl. When water is present the water is decomposed. Hydrochloric acid, HCl, hypochlorous acid, HClO is formed.

The iodide of silver in like manner is changed into a sub-iodide; but with water hydriodic acid is formed unless an iodine absorbent be present--then into hypoiodic acid. The silver bromide undergoes a similar change. When with light alone, a sub-bromide, AgBr=AgBr+Br, and with water hypobromous acid. It is important to bear this in mind, as one or other, and frequently both iodide and bromide of silver, is the sensitive salt requisite or used in producing the invisible image.

The theory regarding these sensitive salts of silver is that, being very unstable, i. e., ready to undergo a molecular change, the undulations produced in the ether, which pervades all space, and the potential action or moving power of light is sufficient to disturb their normal chemical composition; it liberates some of the chlorine, iodine, or bromine, as the case may be. This action, of course, applies to light from any source--the sun, electricity, or the brighter hydrocarbons, also flame from gas or candle, whether it comes direct as rays of white light or is reflected from an object and conducted through a lens as a distinct image upon the screen of a camera.

I have no time to speak on the subject of lenses, only just to mention that they are, or ought to be, achromatic, so as to transmit white light and of perfect definition, and the amount of light passed through should be as much as possible consistent with a sharp image--at least when rapid exposure is attempted.

I shall touch very lightly on the manipulative part of photography, as that would be unnecessary; but a brief account of the chemicals in use is essential to a right appreciation of the theory of developing the image. In the first place, our object is to get a film of some suitable material coated with a thin layer of a sensitive salt of silver--say a bromo-iodide. By mixing certain proportions of ammonium iodide and cadmium bromide, or an iodide and bromide of cadmium with collodion--which is pyroxyline, a kind of gun-cotton dissolved in ether and alcohol--a plate of glass is coated, and before being perfectly dry is immersed in the nitrate of silver bath. The silver nitrate solution, adhering and entering to a slight extent the surface of the collodion, becomes converted by an ordinary chemical action of affinity into silver iodide and bromide.

The ammonium and cadmium play a secondary part in the process, and are not absolutely necessary in forming the image. The plate is now extremely sensitive to light. When we have entered it into the dark slide and camera, and then exposed to light, the change I mentioned has taken place. The film is transformed into different quantities of sub-iodide and sub-bromide of silver, according to brilliancy of light. In addition, there is on the plate an amount of unchanged silver nitrate which becomes useful in the second stage, or development. The image is not seen as yet, being latent, and requiring the well-known developing solution of sulphate of iron, acetic acid, alcohol, and water. Practically we all recognize the effect of a nicely-balanced wave of developer worked round a plate. The high lights are first to appear as a darker color, till the details of shadow come out; when this is reached the developer is washed off. The chemical action is briefly thus, and it can be shown by solutions without a photographic plate, as in a test tube: Pour into this glass a solution of silver nitrate, AgNO, and add a solution of ferrous sulphate, FeSO. The ferrous sulphate combines with the nitric acid, forming two new salts--ferric nitrate and ferric sulphate. The silver is deposited. Any other substance which will remove oxygen from silver nitrate without combining with the silver would do the same, and metallic silver would be thrown down. The formula, as shown on the diagram, explains the interchange.

When the developer is poured over the plate it attacks first the free silver nitrate, and causes it to deposit extremely fine particles of metallic silver. The question arises: How is it these particles arrange themselves to form an image? This is explained by the physical movement known as molecular attraction or affinity. These particles are attracted first to the portions of the plate where there is most sub-iodide and sub-bromide. In the shady parts less silver is deposited. When the image is once started it follows that particles of silver produced by the iron developer will cause more to fall down on the face of those already present, and the image is, of course, built up if the silver nitrate be all consumed on the plate. The developer then becomes useless or injurious. The presence of acetic acid checks the reduction of the silver, and the alcohol facilitates the flow when the bath becomes charged with ether and spirit.

The molecular attraction just mentioned is made plainer by reference to the simple lead tree experiment. We have here in this bottle a piece of zinc rod introduced into a solution of acetate of lead. A chemical change has taken place. The zinc has abstracted the acetic acid and the lead is deposited on the zinc, and will continue to be so until the solution is exhausted. The irregularities of surface and arborescent appearance are well shown. If the change were rapidly conducted the lead particles would from their weight sink directly to the bottom instead of aggregating together like ordinary crystals. I have constructed a diagram of colored card, which will perhaps more clearly demonstrate the relation of the different constituents. The lower portion (Fig. a) represents a section of the glass plate or support, the collodion film (Fig. b) having upon its surface a thin layer of bromo-iodine silver (Fig. c), which, when exposed to a well-lighted image, as in a camera, changes into different gradations of sub-bromide and sub-iodide, as indicated by irregular, dark masses in the film. The dotted marks immediately above these are intended for the silver deposit (Fig. d)--clusters of granules, more abundant in the well lighted and less in the shaded parts of the picture, corresponding to the amount of sub-bromide and iodide beneath.

The Photographic Image What It Is 288 15a

SECTION OF SENSITIVE PLATE AFTER EXPOSURE AND DURING DEVELOPMENT.

d Silver deposit--Image, c Sub-bromide and sub-chloride
(gradations of), b Collodion film--Substratum, a Section
of glass plate--Support.

The next point to consider is that of intensification--a process seldom required in positive pictures, and would not be needed so often in negatives if there was enough free silver nitrate on the plate during development. The object, as we all know, in a wet-plate negative is to get good printing density without destruction of half-tone. It is a rule, I believe, in an over-exposed picture to intensify after fixing the image, and in an under-exposed picture to intensify before fixing. Whichever is done the intention is similar, namely, to intercept in a greater degree the light passing through a negative, so as to make a whiter and cleaner print. The usual intensifier--and, I suppose, there is no better--is pyrogallic acid, citric acid, water, and a few drops of silver nitrate solution. Pyrogallic is the most active agent, and might be used alone with water; but for special reasons it is not desirable. As a chemical it has a great affinity for oxygen, and will precipitate silver from a solution containing, for instance, nitrate of silver. It also combines with the metal, forming a pyrogallate--a dark brown, very non-actinic material. The use of a few drops of AgNO solution is very evident. A deposit is added to the image already formed. Citric acid is the retarder in this case. Alcohol is unnecessary, as the film is well washed with water before the intensifier is used, consequently it flows readily over the plate.

As regards fixing, or, more properly, clearing the image: it is the simple act of dissolving out or from the film all free nitrate, chloride, iodide, or bromide. Cyanide of potassium does not attack the metallic deposit unless very strong. It has then a tendency to reduce the detail in the shadows.

THOMAS H. MORTON, M.D.