Among the numerous other applications of the electrical transmission of power, that to electrical railways, first exhibited by Dr. Werner Siemens, at the Berlin Exhibition of 1879, had created more than ordinary public attention. In it the current produced by the dynamo machine, fixed at a convenient station and driven by a steam engine or other motor, was conveyed to a dynamo placed upon the moving car, through a central rail supported upon insulating blocks of wood, the two working rails serving to convey the return current. The line was 900 yards long, of 2 ft gauge, and the moving car served its purpose of carrying twenty visitors through the exhibition each trip. The success of this experiment soon led to the laying of the Lichterfelde line, in which both rails were placed upon insulating sleepers, so that the one served for the conveyance of the current from the power station to the moving car, and the other for completing the return circuit. This line had a gauge of 3 ft. 3 in., was 2,500 yards in length, and was worked by two dynamo machines, developing an aggregate current of 9,000 watts, equal to 12 horse power. It had now been in constant operation since May 16, 1881, and had never failed in accomplishing its daily traffic.

A line half a kilometer in length, but of 4 ft. 8½ in. gauge was established by the lecturer at Paris in connection with the Electric Exhibition of 1881. In this case, two suspended conductors in the form of hollow tubes with a longitudinal slit were adopted, the contact being made by metallic bolts drawn through these slit tubes, and connected with the dynamo machine on the moving car by copper ropes passing through the roof. On this line 95,000 passengers were conveyed within the short period of seven weeks.

An electric tramway, six miles in length, had just been completed, connecting Portrush with Bush Mills, in the north of Ireland, in the installation of which the lecturer was aided by Mr. Traill, as engineer of the company by Mr. Alexander Siemens, and by Dr. E. Hopkinson, representing his firm. In this instance the two rails, 3 ft. apart, were not insulated from the ground, but were joined electrically by means of copper staples and formed the return circuit, the current being conveyed to the car through a T iron placed upon short standards, and insulated by means of insulate caps. For the present the power was produced by a steam engine at Portrush, giving motion to a shunt-wound dynamo of 15,000 watts=20 horse power, but arrangements were in progress to utilize a waterfall of ample power near Bush Mills, by means of three turbines of 40 horse power each, now in course of erection. The working speed of this line was restricted by the Board of Trade to ten miles an hour, which was readily obtained, although the gradients of the line were decidedly unfavorable, including an incline of two miles in length at a gradient of 1 in 38. It was intended to extend the line six miles beyond Bush Mills, in order to join it at Dervock station with the north of Ireland narrow gauge railway system.

The electric system of propulsion was, in the lecturer's opinion, sufficiently advanced to assure practical success under suitable circumstances--such as for suburban tramways, elevated lines, and above all lines through tunnels; such as the Metropolitan and District Railways. The advantages were that the weight, of the engine, so destructive of power and of the plant itself in starting and stopping, would be saved, and that perfect immunity from products of combustion would be insured The experience at Lichterfelde, at Paris, and another electric line of 765 yards in length, and 2 ft. 2 in. gauge, worked in connection with the Zaukerode Colliery since October, 1882, were extremely favorable to this mode of propulsion. The lecturer however did not advocate its prospective application in competition with the locomotive engine for main lines of railway. For tramways within populous districts, the insulated conductor involved a serious difficulty. It would be more advantageous under these circumstances to resort to secondary batteries, forming a store of electrical energy carried under the seats of the car itself, and working a dynamo machine connected with the moving wheels by means of belts and chains.

The secondary battery was the only available means of propelling vessels by electrical power, and considering that these batteries might be made to serve the purpose of keel ballast, their weight, which was still considerable, would not be objectionable. The secondary battery was not an entirely new conception. The hydrogen gas battery suggested by Sir Wm. Grove in 1841, and which was shown in operation, realized in the most perfect manner the conception of storage, only that the power obtained from it was exceedingly slight. The lecturer, in working upon Sir Wm. Grove's conception, had twenty-five years ago constructed a battery of considerable power in substituting porous carbon for platinum, impregnating the same with a precipitate of lead peroxidized by a charging current. At that time little practical importance attached however to the object, and even when Plante, in 1860, produced his secondary battery, composed of lead plates peroxidized by a charging current, little more than scientific curiosity was excited.

It was only since the dynamo machine had become an accomplished fact that the importance of this mode of storing energy had become of practical importance, and great credit was due to Faure, to Sellon, and to Volckmar for putting this valuable addition to practical science into available forms. A question of great interest in connection with the secondary battery had reference to its permanence. A fear had been expressed by many that local action would soon destroy the fabric of which it was composed, and that the active surfaces would become coated with sulphate of lead, preventing further action. It had, however, lately been proved in a paper read by Dr. Frankland before the Royal Society, corroborated by simultaneous investigations by Dr. Gladstone and Mr. Tribe, that the action of the secondary battery depended essentially upon the alternative composition and decomposition of sulphate of lead, which was therefore not an enemy, but the best friend to its continued action.

In conclusion, the lecturer referred to electric nomenclature, and to the means for measuring and recording the passage of electric energy. When he addressed the British Association at Southampton, he had ventured to suggest two electrical units additional to those established at the Electrical Congress in 1881, viz.: the watt and the joule, in order to complete the chain of units connecting electrical with mechanical energy and with the unit quantity of heat. He was glad to find that this suggestion had met with a favorable reception, especially that of the watt, which was convenient for expressing in an intelligible manner the effective power of a dynamo machine, and for giving a precise idea of the number of lights or effective power to be realized by its current, as well as of the engine power necessary to drive it; 746 watts represented 1 horse-power.

Finally, the watt meter, an instrument recently developed by his firm, was shown in operation. This consisted simply of a coil of thick conductor suspended by a torsion wire, and opposed laterally to a fixed coil of wire of high resistance. The current to be measured flowed through both coils in parallel circuit, the one representing its quantity expressible in amperes, and the other its potential expressible in volts. Their joint attractive action expressed therefore volt-amperes or watts, which were read off upon a scale of equal divisions.

The lecture was illustrated by experiments, and by numerous diagrams and tables of results. Measuring instruments by Professors Ayrton and Perry, by Mr. Edison and by Mr. Boys, were also exhibited.