[Footnote: Being an abstract of the introductory lecture to a course on photography at the Polytechnic Institute, November 11.]

By E. HOWARD FARMER, F.C.S.

Since the first announcement of these lectures, our Secretary has asked me to give a free introductory lecture, so that all who are interested in the subject may come and gather a better idea as to them than they can possibly do by simply leading a prospectus. This evening, therefore, I propose to give first a typical lecture of the course, and secondly, at its conclusion, to say a few words as to our principal object. As the subject for this evening's lecture I have chosen, "The Preparation of Gelatine Plates," as it is probably one of very general interest to photographers.

Before preparing our emulsion, we must first decide upon the particular materials we are going to use, and of these the first requisite is nitrate of silver. Nitrate of silver is supplied by chemists in three principal conditions:

1. The ordinary crystallized salt, prepared by dissolving silver in nitric acid, and evaporating the solution until the salt crystallizes out. This sample usually presents the appearance of imperfect crystals, having a faint yellowish tinge, and a strong odor of nitrous fumes, and contains, as might be expected, a considerable amount of free acid.

2. Fused nitrate, or "lunar caustic," prepared by fusing the crystallized salt and casting it into sticks. Lunar caustic is usually alkaline to test paper.

3. Recrystallized silver nitrate, prepared by redissolving the ordinary salt in distilled water, and again evaporating to the crystallizing point. By this means the impurities and free acid are removed.

I have a specimen of this on the table, and it consists, as you observe, of fine crystals which are perfectly colorless and transparent; it is also perfectly neutral to test paper. No doubt either of these samples can be used with success in preparing emulsions, but to those who are inexperienced, I recommend that the recrystallized salt be employed. We make, then, a solution of recrystallized silver nitrate in distilled water, containing in every 12 ounces of solution 1¼ ounces of the salt.

The next material we require is a soluble bromide. I have here specimens of various bromides which can be employed, such as ammonium, potassium, barium, and zinc bromides; as a rule, however, either the ammonium or potassium salt is used, and I should like to say a few words respecting the relative efficiency of these two salts.

1. As to ammonium bromide. This substance is a highly unstable salt. A sample of ammonium bromide which is perfectly neutral when first prepared will, on keeping, be found to become decidedly acid in character. Moreover, during this decomposition, the percentage of bromine does not remain constant; as a rule, it will be found to contain more than the theoretical amount of bromine. Finally, all ammonium salts have a most destructive action on gelatine; if gelatine, which has been boiled for a short time with either ammonium bromide or ammonium nitrate, be added to an emulsion, it will be found to produce pink fog--and probably frilling--on plates prepared with the emulsion. For these reasons, I venture to say that ammonium bromide, which figures so largely in formulae for gelatine emulsions, is one of the worst bromides that can be employed for that purpose, and is, indeed, a frequent source of pink fog and frilling.

2. As to potassium bromide. This is a perfectly stable substance, can be readily obtained pure, and is constant in composition; neither has it (nor the nitrate) any appreciable destructive action on gelatine. We prepare, then, a solution of potassium bromide in water containing in every 12 ounces of solution 1 ounce of the salt. On testing it with litmus paper, the solution may be either slightly alkaline or neutral; in either case, it should be faintly acidified with hydrochloric acid.

The last material we require is the gelatine, one of the most important, and at the same time the most difficult substance to obtain of good quality. I have various samples here--notably Nelson's No. 1 and "X opaque;" Coignet's gold medal; Heinrich's; the Autotype Company's; and Russian isinglass.

The only method I know of securing a uniform quality of gelatine is to purchase several small samples, make a trial emulsion with each, and buy a stock of the sample which gives the best results. To those who do not care to go to this trouble, equal quantities of Nelson's No. 1 and X opaque, as recommended by Captain Abney, can be employed. Having selected the gelatine, 1¼ ounces should be allowed to soak in water, and then melted, when it will be found to have a bulk of about 6 ounces.

In order to prepare our emulsion, I take equal bulks of the silver nitrate and potassium bromide solutions in beakers, and place them in the water bath to get hot. I also take an equal bulk of hot water in a large beaker, and add to it one-half an ounce of the gelatine solution to every 12 ounces of water. Having raised all these to about 180° F., I add (as you observe) to the large beaker containing the dilute gelatine a little of the bromide, then, through a funnel having a fine orifice, a little of the silver, swirling the liquid round during the operation; then again some bromide and silver, and so on until all is added.

When this is completed, a little of the emulsion is poured on a glass plate, and examined by transmitted light; if the mixing be efficient, the light will appear--as it does here--of an orange or orange red color.

It will be observed that we keep the bromide in excess while mixing. I must not forget to mention that to those experienced in mixing, by far the best method is that described by Captain Abney in his Cantor lectures, of keeping the silver in excess.

The emulsion, being properly mixed, has now to be placed in the water bath, and kept at the boiling point for forty-five minutes. As, obviously, I cannot keep you waiting while this is done, I propose to divide our emulsion into two portions, allowing one portion to stew, and to proceed with the next operation with the remainder.

Supposing, then, this emulsion has been boiled, it is placed in cold water to cool. While it is cooling, let us consider for a moment what takes place during the boiling. It is found that during this time the emulsion undergoes two remarkable changes:

1. The molecules of silver bromide gradually aggregate together, forming larger and larger particles.

2. The emulsion increases rapidly in sensitiveness. Now what is the cause, in the first place, of this aggregation of molecules: and, in the second place, of the increase of sensitiveness? We know that the two invariably go together, so that we are right in concluding that the same cause produces both.

It might be thought that heat is the cause, but the same changes take place more slowly in the cold, so we can only say that heat accelerates the action, and hence must conclude that the prime cause is one of the materials in the emulsion itself.

Now, besides the silver bromide, we have in the emulsion water, gelatine, potassium nitrate, and a small excess of potassium bromide; and in order to find which of these is the cause, we must make different emulsions, omitting in succession each of these materials. Suppose we take an emulsion which has just been mixed, and, instead of boiling it, we precipitate the gelatine and silver bromide with alcohol; on redissolving the pellicle in the same quantity of water, we have an emulsion the same as previously, with the exception that the niter and excess of potassium bromide are absent. If such an emulsion be boiled, we shall find the remarkable fact that, however long it be boiled, the silver bromide undergoes no change, neither does the emulsion become any more sensitive. We therefore conclude, that either the niter or the small excess of potassium bromide, or both together, produce the change.

Now take portions of a similarly washed emulsion, and add to one portion some niter, and to another some potassium bromide; on boiling these we find that the one containing niter does not change, while that containing the potassium bromide rapidly undergoes the changes mentioned.

Here, then, by a direct appeal to experiment, we prove that to all appearance comparatively useless excess of potassium bromide is really one of the most important constituents of the emulsion.

The following table gives some interesting results respecting this action of potassium bromide:

 __________________________________________________________

Excess of potash bromide. | Time to acquire maximum |

| sensitiveness. |

--------------------------+------------------------------+

0.2 grain per ounce | no increase after six hours. |

2.0 " " | about one-half an hour. |

20.0 " " | seven minutes. |

--------------------------+------------------------------+ 

I must here leave the rationale of the process for the present, and proceed with the next operation.

Our emulsion being cold, I add to it, for every 6 ounces of mixed emulsion, 1 ounce of a saturated cold solution of potassium bichromate; then, gently swirling the mixture round, a few drops of a dilute (1 to 8) solution of hydrochloric acid, and place it on one side for a minute or two.

When hydrochloric acid is added to bichromate of potash, chromic acid is liberated. Now, chromic acid has the property of precipitating gelatine, so that what I hope to have done is to have precipitated the gelatine in this emulsion, and which will carry down the silver bromide as well. You see here I can pour off the supernatant liquid clear, leaving our silver and gelatine as a clot at the bottom of the vessel.

Another action of chromic acid is, that it destroys the action of light on silver bromide, so that up to this point operations can be carried on in broad daylight.

The precipitated emulsion is now taken into the dark room and washed until the wash water shows no trace of color; if there be a large quantity, this is best done on a fine muslin filter; if a small quantity, by decantation.

Having been thoroughly washed, I dissolve the pellicle in water by immersing the beaker containing it in the water bath. I then add the remaining gelatine, and make up the whole with 3 ounces of alcohol and water to 30 ounces for the quantities given. I pass the emulsion through a funnel containing a pellet of cotton wool in order to filter it, and it is ready for coating the plates.

To coat a plate, I place it on this small block of leveled wood, and pour on down a glass rod a small quantity of the emulsion, and by means of the rod held horizontally, spread it over the plate. I then transfer the plate to this leveled slab of plate glass, in order that the emulsion on it may set. As soon as set, it is placed in the drying box.

This process, as here described, does not give plates of the highest degree of sensitiveness, to attain which a further operation is necessary; they are, however, of exceedingly good quality, and very suitable for landscape work.--Photo. News.