The accompanying engravings illustrate a new and very simple form of gas engine, the invention of J. A. Ewins and H. Newman, and made by Mr. T. B. Barker, of Scholefield-street, Bloomsbury, Birmingham. It is known as the "Universal" engine, and is at present constructed in sizes varying from one-eighth horse-power--one man power--to one horse-power, though larger sizes are being made. The essentially new feature of the engine is, says the Engineer, the simple rotary ignition valve consisting of a ratchet plate or flat disk with a number of small radial slots which successively pass a small slot in the end of the cylinder, and through which the flame is drawn to ignite the charge. In our illustrations Fig. 1 is a side elevation; Fig. 2 an end view of same; Fig. 3 a plan; Fig. 4 is a sectional view of the chamber in which the gas and air are mixed, with the valves appertaining thereto; Fig. 5 is a detail view of the ratchet plate, with pawl and levers and valve gear shaft; Fig. 6 is a sectional view of a pump employed in some cases to circulate water through the jacket; Fig. 7 is a sectional view of arrangement for lighting, and ratchet plate, j, with central spindle and igniting apertures, and the spiral spring, k, and fly nut, showing the attachment to the end of the working cylinder, f1; b5, b5, bevel wheels driving the valve gear shaft; e, the valve gear driving shaft; e2, eccentric to drive pump; e³, eccentric or cam to drive exhaust valve; e4, crank to drive ratchet plate; e5, connecting rod to ratchet pawl; f, cylinder jacket; f1, internal or working cylinder; f2, back cylinder cover; g, igniting chamber; h, mixing chamber; h1, flap valve; h2, gas inlet valve, the motion of which is regulated by a governor; h3, gas inlet valve seat; h4, cover, also forming stop for gas inlet valve; h5, gas inlet pipe; h6, an inlet valve; h8, cover, also forming stop for air inlet valve; h9, inlet pipe for air with grating; i, exhaust chamber; i2, exhaust valve spindle; i7, exhaust pipe; j6, lighting aperture through cylinder end; l, igniting gas jet; m, regulating and stop valve for gas.

IMPROVED GAS ENGINE

IMPROVED GAS ENGINE

The engine, it will be seen, is single-acting, and no compression of the explosive charge is employed. An explosive mixture of combustible gas and air is drawn through the valves, h2 and h6, and exploded behind the piston once in a revolution; but by a duplication of the valve and igniting apparatus, placed also at the front end of the cylinder, the engine may be constructed double-acting. At the proper time, when the piston has proceeded far enough to draw in through the mixing chamber, h, into the igniting chamber, g, the requisite amount of gas and air, the ratchet plate, j, is pushed into such a position by the pawl, j3, that the flame from the igniting jet, l, passes through one of the slots or holes, j1, and explodes the charge when opposite j6, which is the only aperture in the end of the working cylinder (see Fig. 7 and Fig. 2), thus driving the piston on to the end of its forward stroke. The exhaust valve, Fig. 9, though not exactly of the form shown, is kept open during the whole of this return stroke by means of the eccentric, e3, on the shaft working the ratchet, and thus allowing the products of combustion to escape through the exhaust pipe, i7, in the direction of the arrow.

Between the ratchet disk and the igniting flame a small plate not shown is affixed to the pipe, its edge being just above the burner top. The flame is thus not blown out by the inrushing air when the slots in ratchet plate and valve face are opposite. This ratchet plate or ignition valve, the most important in any engine, has so very small a range of motion per revolution of the engine that it cannot get out of order, and it appears to require no lubrication or attention whatever. The engines are working very successfully, and their simplicity enables them to be made at low cost. They cost for gas from ½d. to 1½d. per hour for the sizes mentioned.

The Universal Gas Engine 360 3c

Fig.9.