On 4" extra heavy pipe my results have been as follows:

Percentage passed as good, single hub.60 per ct. to 70 per ct.
Percentage passed as good, double.20 per ct. to 80 per ct.
Percentage passed special castings, including Y's and T's. 60 per ct.

5" pipe extra heavy:

Percentage passed as good, single hub.25 per ct. to 35 per ct.
Percentage passed as good, double.No record.
Percentage special castings, including Y's and T's. 60 per ct.

It has been stated to me by dealers that the tar coating does away with the necessity of any such test as the oil; while I am not prepared to acknowledge or deny the statement, it is well known that much poor pipe is tar-coated and sold in the market as good, and when coated it is almost impossible to detect any but very defective work.

The price customers are obliged to pay for soil pipe, either "heavy" or "extra heavy," is very high indeed, even taking off the discounts, and amounts (as I figure it) to $70 per long ton for 4" pipe. The present rate for the best water pipe of the same caliber is about $38 (now $29) per long ton, and the additional charge for soil pipe should guarantee the very best iron in the market, though it appears to be rarely furnished.

It is asserted that all soil pipe is tested to a 50-pound water pressure. I beg leave to question the absolute truth of this, unless it be acknowledged that pipe is sold indiscriminately, whether it bears the test or not, for more than once I have found a single length of soil pipe (5 feet) that could not bear the pressure of a column of water of its own height without leaking.

Having obtained a satisfactory lot of soil pipe and fittings, the next trouble comes with the lead calking. Unfortunately, it is frequently found that very shallow joints are made instead of deep ones, and hard lead used instead of soft. My rule is, soft lead, two runnings and two calkings. By soft lead I mean pig lead, and by hard lead I mean old pipe and scrap lead that may have been melted a dozen times. Incidentally it may be remarked that it is quite difficult to calk a tight joint on the heavy pipe; the process will crack the hub.

The fixtures used in a house are of minor importance - there are dozens of good patterns of every class. If they are carefully put in, and provided with suitable traps placed just as close to the fixture as possible, the result will usually be satisfactory.

Very few instances occur where traps are placed as close to the fixtures they serve as they might be, and yet a very short length of untrapped pipe, when fouled, will sometimes smell dreadfully. A set bowl with trap two feet away may become in time a great nuisance if not properly used. A case in point where the fixture was used both as a bowl and a urinal was in a few months exceedingly offensive - a fact largely (though not wholly) due to its double service.

I have never met two sanitarians who agreed upon the same water-closets, bowls, faucets, traps, etc.

Of course, the soil pipe will be carried, of full size, through the roof, and sufficiently high to clear all windows.

Avoid multiplicity of fixtures or pipes; cut off all fixtures not used at least twice a week, lest their traps dry out; have all plumbing as simple as possible, and try and get it all located so that outside air can be got directly into all closets and bath-rooms. As far as possible, set your fixtures in glass rather than tiles or wood. Carry the lower end of the main drain at least five feet beyond the cellar walls of the building, of cast iron.

Let us now look at the outside work. The main drain (carrying everything except the kitchen and pantry sinks) goes through a ventilated running trap. An indirect fresh air inlet is provided on the house side of the trap (example), to prevent annoyance from puffing or pumping, or, better still, a pipe corresponding to the soil pipe is carried up on the outside of the house.

The running trap ventilator should be of the same diameter as the main drain (4 inch), and serve as a main drain vent also. Carry this pipe on the outside of the house as high as the top of the chimney.

A grease-trap should be provided for the kitchen and pantry sinks. Formerly my custom was to put in brick receptacles; it is now to put in Portland cement traps (Henderson pattern), though perhaps I may succeed in devising a cast-iron one that will answer better. The brick ones were occasionally heaved by the frost, and cracked; the Portland cement ones answer better, and when thoroughly painted with red lead do not soak an appreciable quantity of sewage to be offensive, but are too high priced ($28 each). I have made one or two patterns for cast-iron ones, but none as yet that I feel satisfied with.

Beyond the running trap an Akron pipe should convey the sewage to a tank or cesspool.

Our supposable case is the second most difficult to take care of. The worst would be ledge. We have to contend with, however, hard, wet, impervious clay.

The best way undoubtedly is to underdrain the land, and then to distribute the sewage on the principle of intermittent downward filtration. This is rather expensive, and a customer is rarely willing to pay the bills for the same. I should always advise it as the best; but where not allowed to do so, I have had fair success with shallow French drains connecting with the tank or cesspool.

Siphon tanks, such as are advised by many sanitarians, that were used first in this country, I believe, by Mr. Waring, I have not been very successful with. Obstructions get into the siphon and stop it up, or it gets choked with grease. I prefer a tight tank, provided with a tell-tale, and that is to be opened either by a valve operated by hand, or that is arranged with a standing overflow like a bath tub, and that can be raised and secured by a hook.

[4]Read before the Boston Society of Civil Engineers, April 1884 Journal A. of E. Societies.