As Microscopist of the United States Department of Agriculture, I am frequently called upon to make investigations as to the character of textile fibers and fabrics, not only for the public generally, but also for several departments of the Government.

Textile fibers are presented both in the raw and as articles of manufacture. In the latter case they may have been dyed, stained, or painted. It is obvious that under these conditions the fibers should be subjected to chemical reaction to bring them as nearly as possible to their normal condition.

Considering how well the structures of the common textile fibers of commerce - cotton, flax, ramie, hemp, jute, Manila hemp, silk, and wool - have been investigated and minutely described by able and exact microscopists, I will in this paper confine myself chiefly to such experiments as I have personally made with textile fibers, treating them with chemical agents while under the objective.

While I am aware that this method is not wholly new, I am satisfied that comparatively little work has been done in this direction, and that a wide field is still open for future research.

As microscopists, we have to fortify ourselves in every way that will sustain, by truthful work, the value of the microscope as a means of research, sometimes conducting our experiments under the most trying circumstances. Fibers may be so treated by experts as to make it difficult to determine how their changed appearance has been effected, and it may happen in this age of experiment and of fraud that important decisions in commercial transactions and in criminal cases may depend on our observations.

Detection Of A Fraud

A case in point will illustrate this. While Dr. Dyrenforth was chief of the chemical division of the U.S. Patent Office, a person applied for a patent on what he called "cottonized silk," inclosing specimens. He claimed that he had discovered a mode of covering cotton fiber with a solution of silk which could be woven into goods of various kinds; in order to satisfy the public of the reality of his invention, he placed on exhibition, in various localities, specimens of silk-like goods in the form of ribbons in the web and skeins of thread, representing them to be "cottonized silk."

Dr. Dyrenforth was not satisfied that the so-called discovery was an accomplished fact, and he forwarded a few fibers of the material to the division of which I have charge for investigation. I subjected them to my usual tests, and found them to consist of pure silk, and I so reported to Dr. Dyrenforth, who rejected the application for a patent. The microscope was thus usefully employed to protect capitalists from imposition.

Methods Employed

It may be well to state briefly the methods I employed in detecting the real character of the material. The fibers were first viewed under plain transmitted light, secondly, polarized light and selenite plate. Since silk and cotton are polarizing bodies, "cottonized silk," if such could be made as described, would give, in this case, the prismatic colors of both fibers, and the complementary colors would differ greatly because of the great disparity of their respective polarizing and refractive powers.

The fact will be observed that a cotton fiber presents the appearance of a twisted ribbon when viewed by the microscope, while silk, owing to its cylindrical form, cannot twist on itself. It should also be considered that the diameter of "cottonized silk," so called, would be greater than that of a fiber of silk, because the silk solution would have to be applied to an actual thread of cotton, and not to a single cotton fiber, by reason of the shortness of the original hairs of the latter. Were a single fiber of such a combination put under a suitable objective, and a drop of nitric acid brought in contact with the fiber, it would be seen that the acid would destroy the silk and leave the fibers of cotton untouched, the latter being insoluble in cold nitric acid. The action of muriatic acid is similar in this respect. Were a fiber of cotton present and a drop of pure sulphuric acid placed on it, followed quickly by a drop of a transparent solution of the tincture of iodine, a peculiar change in the fiber would take place, provided the right proportion of acid be used.

Cotton fiber, and especially flax fiber, under such conditions, forms into disks or beads of a beautiful blue color.

Fig. 1 represents a cotton fiber, and 2, 3, 4, 5 those of flax, as they appear under the acid treatment. Every textile amylaceous fiber is convertible into these forms, more or less, by strong sulphuric acid. The fibers of cotton, flax, and ramie are examples of amylaceous cellulose, that is to say, these fibers are converted into starchy matter by treatment with the last-named acid. Therefore combinations of these fibers in any composition of non-amylaceous fiber (ligneous or woody fiber) will be dissolved, leaving the latter unharmed; the woody fibers remaining will prove suitable objects for examination under the microscope.

Cotton Mixed With Linen

Again, it might be important to know whether a certain pulp or composition contained flax in combination with cotton. The composition might be of such a well-digested character as to destroy all appearance of normal form, that is to say, the "twisted ribbon" character of cotton, as well as that of the cylindrical and jointed characteristic of flax, might be lost to ordinary view. In this case make a watery solution of the pulp, spread it out thinly on a glass slide 3 inches by one, draw off any superfluous water, then add one or two drops of a strong solution of chromic acid to the preparation, and place over it a glass cover; when viewed by the microscope, any portion of the flax joints present will appear of a dark brown color; a solution of iodine has a similar effect. The brown portions of the joints are nitrogenous in character; cotton fibers are devoid of nitrogen.

Figs. 1, 2, 3, 4, 5.

Figs. 1, 2, 3, 4, 5.

Experiments With Flax

A chemist of the Department of Agriculture had once occasion to make experiments with flax fibers, his object being to make them chemically pure; and to this end he treated them with excess of bleaching agents, thus rendering them of a beautiful white, silky appearance, to the naked eye; but when I examined them under the microscope, I found the brown nitrogenous matter of the joints still present, and on using the chromic acid test, they became deeply stained. A chemical solution of flax therefore would prove for some purposes undesirable, owing to the presence of this ligneous matter. A chemical solution of cotton which is destitute of ligneous matter will give a chemically pure solution. Cotton is therefore better adapted than flax for collodion compounds.

Wool Tested With Acid

It is known that when wool is treated with the sulphuric acid of commerce or in strong dilute sulphuric acid, the surface scales of the fiber are liberated at one end, and appear, under a low power, as hairs proceeding from the body of the fibers. Wool may remain thus saturated in the acid for several hours, without appearing to undergo any further change, as far as is revealed by the microscope. When treated in mass in a bath of sulphuric acid, strength 60° B., for several minutes, and afterward quickly washed in a weak solution of soda, and finally in pure water and dried, it feels rough to the fingers, owing to the separation of the scales. I have preserved a small quantity of wool thus treated for the last twelve years, my object being to ascertain whether the chemical action to which it was exposed would impair its strength. As far as I can observe, without the aid of the proper tests, it seems to have retained its original tenacity. Wool thus treated seems to possess the property of resisting the ravages of the larvae of the moth. This specimen, although openly exposed for the period named, suffered no injury from them.

Under the microscope, the lubrications appear to have resumed their natural position, and appear finer.

From these experiments it would seem not improbable that a new article of commerce might be produced from wool thus treated, considering that it seems to be moth-proof.

I find in practice that when sable brushes are washed in a weak solution of pure phenic alcohol and afterward in warm water, the moth worm will not eat them. In this way I preserve sable brushes. I mention this chemical fact because it shows that a change of this material is brought about by the phenol as to its edibility, and this may explain why wool treated with sulphuric acid is rendered moth-proof.

I find that when brain matter has been subjected to a solution of weak phenic alcohol, weak alkaline solutions afterward applied fail to separate its nerve-cells on the process of maceration. (This is probably owing to its albuminoids being coagulated by the action of the phenol.) When brain matter is subjected to a weak solution of soda alone, the nerve-cells are easily separated by maceration, and well adapted for microscopic use.

Tests Of Dyed Black Silk

The fibers of dyed black silk may be viewed with interest under the microscope. If a few threads of its warp are placed on a glass slide, and one or two drops of concentrated nitric acid placed in contact with them, the black color changes first to green, then to blue; a life-like motion is observed in all the fibers; they appear marked crosswise like the rings of an earthworm; the surface of each fiber appears loaded with particles of dyestuff; finally the fibers wholly dissolve in the acid. If we now treat a few threads of the weft in the same manner, a similar change of color takes place. When the fibers assume the blue color, a dark line is observed in the center of each, running longitudinally the whole length; this dark line is doubtless the dividing line of the two original normal threads formed directly by the two spinnerets; the dark air line or shadow finally breaks up, and in the course of a few minutes the silk is wholly dissolved. Were ramie, cotton, flax, or hemp present, they would be observed, as all their fibers remain unchanged under this treatment.

If wool be present, rapid decomposition will follow, giving off copious fumes of nitrous acid, allowing, however, sufficient time to observe the separation of the scales of the fibers and to demonstrate by observation under the microscope that the fibers are those of wool.

In making these experiments it is not necessary to use a glass disk over the treated fibers. If a disk or cover is pressed on them while undergoing this treatment, the life-like motion of the silk will not be so apparent.