Class II., Creamers. - Centrifugals of the second class separate liquids from liquids. There are two main applications in this class - to separate cream from milk and fusel oil from alcoholic liquors. When a liquid is to be separated from a liquid, the receptacle must be imperforate. The components of different specific gravity become arranged in distinct concentric cylindrical strata in the basket, and must be conducted away separately. In creamers the particles of cream must not be broken or subjected to any concussion, as partial churning is caused and the cream will, in consequence, sour more rapidly.

The chief cause of oscillations in machines of this class, where the charge is liquid, is the waves which form on the inner surface. They may be met by allowing a slight overflow over the inner edge of the rim of the basket; or by having either horizontal partitions, or vertical, radial ones, special cases of which will be noticed. Oscillations may also be met in the same manner as in sugar machines, by allowing the revolving parts to revolve about an axis through their common center of gravity. (Pat. 360,342 - J. Evans.)

The crudest form of creamer contains a number of bottles, with their necks all directed toward the spindle, filled with milk. The necks, in which the cream collects, are graduated to tell when the operation is complete.

Many methods for introducing the milk into creamers have been devised. It may run in from the top at the center, or emerge from a pipe at the bottom of the basket; or the spindle may be hollow and the milk sucked up through it from a basin below. It is usual to let the milk enter under hydrostatic pressure (Pat. 239,900 - D. M. Weston) and let the force of expulsion of the cream be dependent on this pressure. This renders the escape quiet, and prevents churning. Gravity, too, is made effective in carrying the constituents off.

The cream may escape through a passage in the bottom at the center, and the skim milk at the lower outer corner; or by ingeniously managed passages both may escape at or near center. The rate of discharge can be managed by regulating the size of opening of exit passages.

A curious method consists in having discharge pipes provided with valves and floats at their lower ends, dipping into the liquid (Pat. 240,175). "The valves are opened and closed, or partially opened or closed, by the floats attached to them, these floats being so constructed and arranged with reference to their specific gravity and the specific gravity of the component parts of the liquids operated upon, that they will permit only a liquid of a determinate specific gravity to escape through the pipes to which they are respectively attached."

We may have tubes directed into the different strata with cutting edges. (Pat. 288,782.) A remarkable fact noticed in their use is that these edges wear as rapidly as if solids were cut instead of liquids.

The separated fluids may be received into recessed rings, having discharge pipes, the proportionate quantity discharged being regulated by the proximity of the discharge lips to the surface of the ring, and the centrifugal force being availed of to project the liquids through the discharge pipes.

There is a very simple device by which a very rapid circulation of the liquid is brought about. (Pat. 358,587 - C.A. Backstrom.) The basket has radial vertical partitions, all but one having communicating holes, alternately in upper and lower corners. The milk is delivered into the basket on one side of this imperforate partition and must travel the whole circuit of the basket through these communicating holes, until it reaches the partition again, and then passes into a discharge pipe. Thus during this long course every particle of cream escapes to the center. As the holes are close to the walls of the basket, the cream has not the undulatory motion of the milk, which would injure it. The greater the number of partitions, the longer is the travel of the milk, and the more rapid the circulation. Blades have been devised similar to the above, having communicating passages extending the whole width of the blade, but we see that here the cream would circulate with the milk; which must not be allowed.

Curved blades have been used, and paddles and stirrers, to set the milk in motion, but to them the same objection may be made.

Fig. 30
Fig. 30

Fig. 30 (Pat. 355,048 - C.A. Backstrom) illustrates one of the latest and best styles of creamers. The milk enters at C. The skim milk passes into tube, T, and the cream goes to the center and passes out of the openings in the bottom, kl, k2, and k3, out of the slit, k, and thence out through D5. The skim milk moves through T, becoming more thoroughly separated all the while, and at each of the radial branch tubes, T1, T2, T3, and T4, some cream leaves it and goes to the center, while it passes down out of slit, t3, and thence out of D6.

Fig. 31 (Pat. 355,050 - C.A. Backstrom) shows another very late style of creamer. A pipe delivers the milk into P4. Passing out of the tube separation takes place, and cream falls down the center to P2 and out of O3. When the compartment under the first shelf becomes full of the skim milk, the latter passes up through the slot, S, strikes a radial partition, R, and its course is reversed. Here more cream separates and passes to center and falls directly, and so on through the whole series of annular compartments, until the top one, when the skim milk enters tube T2 and passes out of O2. By this operation there are substantially repeated subjections of specified quantities of milk to the action of centrifugal force, bringing about a thorough separation. By changing the course of the milk in direction, its path is made longer. This machine can run at much lower speed than many other styles, and yet do the same work.

Fig. 31
Fig. 31