The Filter Press Process

The ordinary mash-tun process, as described above, possesses the disadvantage that only coarse grists can be employed. This entails loss of extract in several ways. To begin with, the sparging process is at best a somewhat inefficient method for washing out the last portions of the wort, and again, when the malt is at all hard or "steely," starch conversion is by no means complete. These disadvantages are overcome by the filter press process, which was first introduced into Great Britain by the Belgian engineer P. Meura. The malt, in this method of brewing, is ground quite fine, and although an ordinary mash-tun may be used for mashing, the separation of the clear wort from the solid matter takes place in the filter press, which retains the very finest particles with ease. It is also a simple matter to wash out the wort from the filter cake in the presses, and experience has shown that markedly increased yields are thus obtained. In the writer's opinion, there is little doubt that in the future this, or a similar process, will find a very wide application.


From the mash-tun the wort passes to the copper. If it is not possible to arrange the plant so that the coppers are situated beneath the mash-tuns (as is the case in breweries arranged on the gravitation system), an intermediate collecting vessel (the underback) is interposed, and from this the wort is pumped into the copper. The latter is a large copper vessel heated by direct fire or steam. Modern coppers are generally closed in with a dome-shaped head, but many old-fashioned open coppers are still to be met with, in fact pale-ale brewers prefer open coppers. In the closed type the wort is frequently boiled under slight pressure. When the wort has been raised to the boil, the hops or a part thereof are added, and the boiling is continued generally from an hour to three hours, according to the type of beer. The objects of boiling, briefly put, are: (1) sterilization of the wort; (2) extraction from the hops of substances that give flavour and aroma to the beer; (3) the coagulation and precipitation of a part of the nitrogenous matter (the coagulable albuminoids), which, if left in, would cause cloudiness and fret, etc., in the finished beer; (4) the concentration of the wort. At least three distinct substances are extracted from the hops in boiling.

First, the hop tannin, which, combining with a part of the proteids derived from the malt, precipitates them; second, the hop resin, which acts as a preservative and bitter; third, the hop oil, to which much of the fine aroma of beer is due. The latter is volatile, and it is customary, therefore, not to add the whole of the hops to the wort when it commences to boil, but to reserve about a third until near the end of the copper stage. The quantity of hops employed varies according to the type of beer, from about 3 lb to 15 lb per quarter (336 lb) of malt. For mild ales and porters about 3 to 4 lb, for light pale ales and light stouts 6 to 10 lb, and for strong ales and stouts 9 to 15 lb of hops are employed.