The production of fatty acids from fats and oils by fermentation is growing in importance. These particulars, which are the actual results from recent experiments on a somewhat extended scale, are given: Seven hundred and fifty pounds of cottonseed oil are mixed with 45 gallons of water and 3.5ounds of acetic acid; this mixture is heated to a temperature of 85° F. Castor-oil seeds, 53 pounds, decorticated and ground, are mixed thoroughly with 3 gallons of water and 4.5 gallons of the oil, and this mixture is stirred into the oil and water; the whole mass is then kept mixed for 12 hours by blowing air through, after which it' is allowed to stand for another 12 hours, being given a gentle stir by hand at the end of every hour. After 24 hours the mass is heated to a temperature of 180° F., which stops the fermentation and at the same time allows the fatty acids to separate more freely. To assist in this effect there is added 1 gallon of sulphuric acid (1 in 3) solution.

After 2 hours' standing, the mass will have separated into three layers—fatty acids on the top, glycerine water below, and a middle, undefined layer. The glycerine water is run away, and the whole mass left to stand for 2 hours. The middle portion is run off from the separated fatty acids into another vessel, where it is mixed with 10 gallons of hot water, thoroughly stirred, and allowed to stand for 16 hours or more. The watery layer at the bottom, which contains some glycerine, is then run off, while the residue is mixed with a further quantity of 10 gallons of water, and again allowed to stand. The water which separates out, also the layer of fatty acids that forms on the top, are run off and mixed with the portions previously obtained. The various glycerine waters are treated to recover the glycerine, while the fatty acids are made marketable in any convenient way.

Preservation of Fats

To produce fats and oils containing both iodine and sulphur, whereby they are preserved from going rancid, and consequently can be utilized to more advantage for the usual purposes, such as the manufacture of soaps, candles, etc., following is the Loebell method:

The essential feature of the process is that the iodine is not merely held in solution by the oil or fat, but enters into chemical combination with the same; the sulphur also combines chemically with the oil or fat, and from their reactions the preserving properties are derived.

The process consists of heating, for example, 6 parts of oil with 1 part of sulphur to a temperature varying between 300° and 400° F., then, when at about 195° F., a solution of iodine and oil is added to the mixture, which is constantly agitated until cool to prevent lumps forming. A product is thus obtained which acquires the consistency of butter, and contains both iodine and sulphur in combination.

Purifying Oils and Fats

In purifying fatty oils and fats for edible purposes the chief thing is to remove the free fatty acids, which is done by the aid of solutions of alkalies and alkaline earths. The subsequent precipitation of the resulting soapy emulsions, especially when lime is used, entails prolonged heating to temperatures sometimes as high as the boiling point of water. Furthermore, the amount of alkalies taken is always greater than is chemically necessary, the consequence being that some of the organic substances present are attacked, and malodorous products are formed, a condition necessitating the employment of animal charcoal, etc., as deodorizer.

To prevent the formation of these untoward products, which must injuriously affect the quality of edible oils, C. Fresenius proposes to accelerate the dispersion of the said emulsions by subjecting the mixtures to an excess pressure of 1 to 1.5 atmospheres and a corresponding temperature of about 220° F., for a short time, the formation of decomposition products, and any injurious influence on the taste and smell of the substance being prevented by the addition of fresh charcoal, etc., beforehand. Charcoal may, and must in certain cases, be replaced for this purpose by infusorial earth or fuller's earth. When this process is applied to cottonseed oil, 100 parts of the oil are mixed with 1/10 part of fresh, pure charcoal, and 0.5 part of pure fuller's earth.

The mixture is next neutralized with lime-water, and placed in an autoclave, where it is kept for an hour under pressure, and at a temperature of 220° F. Under these conditions the emulsion soon separates, and when this is accomplished the whole is left to cool down in a closed vessel.