The reconstruction of the present year will extend to the ovens of seven retorts each, giving in this case eighty gas fired retorts; and to twenty ovens of five retorts each, which will become sixteen ovens, each having eight retorts, making 128 retorts in this division, and the total being 208 retorts in place of 170 in the same amount of space. It is confidently anticipated, therefore, that by the month of August of the present year, 480 full sized retorts will be available for working out the new method at the Dalmarnock Gas Works. Furthermore, the confidence which has been inspired in the minds of the members of the Glasgow Corporation Gas Committee and their engineer regarding the actualities and possibilities of the Siemens system of firing gas retorts, in its most improved state, is such that arrangements are being made for starting shortly to apply it throughout at the Dawsholm Station, which is situated in the suburban burgh of Maryhill, and some four or five miles distant from the Dalmarnock Works in a northwestern direction.

The station just named, which is also a very large one, will probably require two years for its conversion.

We shall now give some account of the structural arrangements adopted for producing cheap gaseous fuel, and for turning that fuel to the greatest advantage in firing the retorts for the purpose of carbonizing the cannel coal used as the source of the gas.

The gas producer, which is represented in vertical section in Fig. 2, is a cylinder of brickwork inclosed in a casing of malleable iron. It is 7 ft. 6 in. deep, and 3 ft. in diameter, which becomes reduced to 20 in. above, where it is closed by means of a cast-iron lid, which is continuous with the floor of the retort house. There are no firebars at the bottom, so that the fuel rests on a floor of firebrick. At the bottom of the walls of the producer there are several holes about 1 ft. in length by 6 in. in height. By means of these openings any clinker that may form and the ashes of the spent fuel can readily be withdrawn. They also allow of the admission of air to maintain the combustion in the lower portion of the mass of fuel; and at each opening there is a malleable iron tube for delivering a jet of steam direct from a steam boiler. We shall subsequently explain the functions performed by the steam.

The fuel employed is the coke or char resulting from cannel coal when it has yielded up its hydrocarbons and other gases during the process of carbonization in the gas retorts. Being entirely made from Scotch cannel the coke is very poor in quality, as it contains a large percentage of mineral matter or ash relatively to its fixed carbon. The retorts are worked with three-hour charges, but the producer is only charged once in every six hours For each set of eight retorts the charge of raw cannel is about 18 cwt., and it is found in practice that the coke drawn from five of the retorts is quite sufficient to fill up the producer to the top. Formerly a set of seven retorts fired in the ordinary way from a furnace underneath, required from 60 to 75 per cent. of the coke made, but now, with eight retorts in each oven, the quantity has been reduced to about 30 per cent., or less than one-half of what it formerly was. Before the retorts are drawn the lid is removed from the top of the producer, and any fuel still remaining unconsumed is touched up a bit by way of leveling it on the surface, and as soon as it has been filled up to the constricted portion a shovelful of soft luting is spread over the top of the coke, and the lid is laid upon it and driven home, thereby making a perfectly air-tight joint.

The contents of the other three retorts, as also the contents of the whole of the retorts at each alternate drawing, are taken to the coke heap in the yard. We have already spoken of a charge of cannel as being about 18 cwt. for each set of eight retorts, but in connection with that matter we should mention that it was formerly about 13 cwt. per oven containing seven retorts, and that there is every prospect of it being increased without increasing the length of time occupied in carbonizing the cannel of each charge.

It may be worth while now to notice briefly what takes place among the mass of coke in the gas producer. The atmospheric air admitted at the several openings previously spoken of ascends through the lower layers of the incandescent coke, the carbon of which burns to carbonic acid gas at the expense of the oxygen of the air. Among the middle and upper layers of the incandescent coke the carbonic acid gas takes up a further quantity of the fixed carbon, and becomes transformed into carbonic oxide gas (CO+C=2CO), which is an inflammable body, and possesses considerable calorific power. Unless the carbonic acid gas is very completely "baffled" in its ascent through the coke in the producer, a quantity of it passes into the furnace along with the carbonic oxide, the efficiency of which is diminished in proportion as the former increases in quantity. Of course, also, the nitrogen associated with the oxygen in the air admitted to the gas generator passes on with the carbonic oxide gas, this nitrogen acting as a dilutant and being of course absolutely useless as a generator of heat. The steam which we previously spoke of serves two good purposes.

In contact with incandescent coke it suffers decomposition, its oxygen uniting with some of the fixed carbon to form carbonic oxide, while the hydrogen which is set free passes onward, and mixes with the other gases to be subsequently consumed with them. The admission of the steam thus causes the absorption of heat in the gas generator where the decomposition takes place, this heat being again evolved on the subsequent combustion of the hydrogen. Then, again, as the steam is delivered in among the coke in a jet, or a series of jets, it has the effect of almost entirely preventing any clinkering or slagging of the earthy and silicious materials, which form such a large portion of the substance of the coke obtained from Scotch cannels, sometimes as much as from 15 to 20 per cent. It is scarcely necessary for the stokers to go down below to the bottom of the producers to remove the ash above once in every six hours. Referring to the composition of the gaseous fuel obtained from cannel coke in one of these gas producers, we give the following typical analysis on the authority of Dr. William Wallace, F.R.S.E., gas examiner, and one of the public analysts for the city of Glasgow: