To a practiced operator the indications yielded by the use of this test are of great value; but beginners are exceedingly liable to mistake its various reactions, and to report the urine as saccharine when normal traces only of sugar are present. The bismuth test of Bottger, as greatly improved by Nylander, is fairly delicate, and not so easily misread as Fehling's. A large volume of reagent being used with a comparatively small quantity of urine, the precipitate of earthy phosphates does not interfere in the least with the reaction. On boiling about 3 drachms of Nylander's solution and 20 minims of urine for a minute or two, the liquid darkens with a trace of sugar, and becomes opaque and black if the latter is present in quantity. The reagent is prepared by dissolving 494 grains of caustic soda, 247 grains of Rochelle salt, and 154 grains of subnitrate of bismuth (free from silver) in 13 fluid oz. of distilled water. It should be decanted for use from any sediment.

DR. PAVY'S APPARATUS. DR. PAVY'S APPARATUS.

In those cases where the amount of glucose present is required to be determined, Dr. Pavy's ammonia cupric process distances all compeers for ease of application and delicacy of end-reaction, combined with considerable accuracy. His solution differs from that of Fehling in containing ammonia, which dissolves the cuprous oxide as soon as it is formed, yielding a colorless solution. It is only necessary, therefore, to note the moment that the blue color of the liquid is exactly discharged, in order to tell when all the copper present has been reduced. Pavy's solution is prepared as follows: Dissolve 356 grains of Rochelle salt and the same weight of caustic potash in distilled water; dissolve separately 73 grains of recrystallized cupric sulphate in more water with heat. Add the copper solution to that first prepared, and when cold add 12 fluid oz. of strong ammonia (sp. gr. 0.880), and distilled water to 40 fluid oz. The estimation is thus conducted: Dilute 10 c.c. of the ammoniated cupric solution - equivalent to 5 milligrammes of glucose - with 20 c.c. of distilled water, and place in a 6 or 8 oz. flask.

Attach this by means of a cork to the nozzle of an ordinary Mohr's burette, b, preferably fitted with a glass stopcock, and filled previously with the diluted urine. The small tube, c, which traverses the cork is intended to permit the escape of steam. Now raise the blue liquid in the flask to active ebullition - not too violent - by the aid of a spirit lamp or small Bunsen flame. Turn the stopcock in order to allow the urine to flow into the boiling solution at the rate of about 100 drops per minute (not more or much less) until the azure tint is exactly discharged. Then stop the flow, and note the number of cubic centimeters used. That amount of dilute urine will contain 5 milligrammes of glucose. To render the determination as accurate as possible, the urine should be diluted to such an extent that not less than 4 or more than 7 c.c. are required to decolorize the solution, and the proportions necessary will be found to vary from 1 part of urine in 2½ to 1 in 30 or 40. The subsequent calculation is very simple. If you wish to give the percentage of sugar, multiply 0.005 by 100, and divide the product by the number of cubic centimeters of dilute urine employed. The figure thus obtained, multiplied by the extent of dilution - i.e., if there is 1 of urine in 10, multiply by 10 - gives the required percentage. The number of grains per fluid ounce can of course be obtained by multiplying the percentage by 4.375. To observe easily the exact end-reaction a piece of white paper should be placed behind the flask. If the analyst objects to the escape of the waste ammoniacal fumes, they may be conducted by a suitable arrangement into water or dilute acid. In addition to glucose there are small quantities of other copper-reducing bodies present in all urine, which always render the reading higher than strict accuracy would demand. Their aggregate proportion, however, is, comparatively speaking, so minute that for most medical purposes their presence may be disregarded. Greater care must be exercised, though, in those instances where such a deoxidizer as chloral hydrate is accidentally present. In case of doubt, a little washed and pressed yeast should be allowed to stand with the urine for a day or two in a warm place. Alcoholic fermentation with evolution of carbonic acid gas soon sets in, and the specific gravity of the liquid is lowered considerably.

This reaction points conclusively to the presence of sugar.

Based upon Braun's potassic picrate test, Dr. G. Johnson has devised a colorimetric process for the estimation of sugar. On boiling an alkaline solution of that salt with glucose, the former is reduced to deep red-brown picramate, the color of the liquid, of course, varying in intensity according to the proportion of sugar present. This solution is diluted till it corresponds in tint with a ferric acetate standard, and the percentage of sugar is then readily calculated. For those who prefer this process the convenient apparatus manufactured by Mr. Cetti, of 36 Brooke street, Holborn, is recommended, who will also furnish full particulars of the test.

Albumen

Normal urine is free from coagulable proteids, though it is admitted that albumen may sometimes occur in the absence of disease. It is always highly important, therefore, to determine accurately the presence or absence of this body. In the relentless malady named after Richard Bright, the urine always contains albumen, and if accompanied by the "casts" of the uriniferous tubules your report may amount to a sentence of certain death. The tests which we now describe are accurate and easily applied; but reliance should never be placed on any single reaction - at any rate until the operator has acquired considerable experience.